3.

The Growth of U. S. Naval Cadets.

By Henry G. Beyer, M. D., Ph. D., Surgeon, U. S. N.

Reprinted from the Proceedings of the United States Naval Institute, Volume XXI., No. 2. Whole No. 74.
[COPYRIGHTED.]

THE GROWTH OF U. S. NAVAL CADETS.

By Henry G. Beyer, M. D., Ph. D., Surgeon U. S. Navy.

The study of the growth and the development of the human subject has always been one of great interest, not only to the physiologist and statistician, but also to the general reader. While, however, growth seems to be the most natural thing that occurs in the animate world and in living things, some of the mysterious laws that govern the process are still involved in obscurity.

One of the means for the study of human development is anthropometry. By it we are enabled to record the progress that has been made in the different dimensions from time to time, and, providing our material is sufficiently large, to form our conclusions accordingly.
Thus it has been the custom at the Naval Academy for the last thirty years or more to make an annual physical examination of every cadet in training at that school, and, at the same time, to keep a record of certain anthropometric measurements of every cadet undergoing such examination. As the material that has accumulated in this manner is now sufficiently large, it would seem as if it were a duty to attempt a systematic study of these valuable records, with the view of contributing something to our present knowledge of the subject of growth.

As regards the nature of the examination itself, it is well known to all interested in the subject of anthropometry from the items that are recorded, and needs, therefore, not be described in detail. Up to a few years ago the height standing, perineal height, circumference of chest, waist measure and the lung capacity were the only items recorded. Within recent years the height sitting, span of arms, strength of squeeze, acuteness of vision and hearing have been added to these records. The number of observations
under the first-named items is, consequently, much larger than that under the last named.

The fact that all the measurements are taken and recorded by medical men is sufficient guarantee of their accuracy and adds no little value to the results we may derive from them.

The cadet who stays the full term of four years at this school leaves on the books the records of five successive examinations taken one year apart; after graduation two years are spent at sea, after which time the cadet returns to the Academy for his final examination, leaving the records of another physical examination. This makes six in all. Since the age for entrance into the Academy is limited to from I 5 to 18 years, and taking six years as the time necessary to elapse between the first and last examinations, the period of growth covered by these records ranges all the way from 15 to 24 years of age.

The circumstance that the cadets for the Naval Academy are appointed from all parts of the United States by their representatives in Congress ought, in our opinion, to add considerable weight in our attaching to whatever means or averages we may derive from their measurements a certain value, more national in character than can be attributed to the means and averages derived from the measurements of merely local schools and colleges. Besides, another point that is calculated to make our records particularly valuable is the fact that a large percentage of them are continuous records. The number of cadets that enter annually may be said to have varied in the past between 60 and 80 , and that of those who graduate between 30 and 40.

It is perhaps also of some importance to mention the fact at the beginning that, from the great preponderance of blue eyes and light brown hair prevailing among Naval Cadets, it is safe to state that the great majority of them are of Anglo-Saxon and Teutonic origin. It is not impossible that the school may have exercised and is still exercising a certain degree of selection from that type of men for its devotees.

Statistical Methods.

One of the greatest impediments to our progress in the study of growth in this country has undoubtedly been due to the fact that different observers have used different methods of recording the results of their investigations, and, consequently, these results are difficult of comparison.

As regards the methods of investigation used in the present inquiry and those of recording its results, I have adhered to those used by Prof. W. T. Porter in his work on the " Growth of St. Louis Children" as closely as possible and with the view of making my statistics strictly comparable to his.

A brief outline of these methods and our conception of them seems, therefore, essential.

Based on Quetelet's statements made many years ago, it has since been most generally assumed that all anthropometric measurements would be found distributed according to the laws of chance; that a large number of measurements, for instance, of the height of man would arrange themselves on either side of a true height. It has, furthermore, been assumed that this arrangement would be symmetrical on either side of the true height if the number of observations were infinite and if only accidental influences had been at work in each individual measurement in a given series.

Quetelet's theory has since been further developed by Stieda and Ihring and also by Galton. In the same manner Bowditch and Porter have adhered to the theory of Quetelet, and all their investigations are based on this theory.

Quite recently Boas has made the following remarks regarding the theory of Quetelet, viz : " Glancing over the curves representing large series of measurements, it strikes me that they conform to the laws of chance only in a general way and that considerable deviations occur quite frequently. . . . Assuming that there is a uniform ancestral type in a certain district, and that the conditions of life remain stable, we may expect that the people representing its offspring will be grouped around the type according to the laws of chance. Assuming, however, that there were two distinct ancestral types in adjoining districts, and that these types intermingled, we cannot foretell what the distribution of forms among the offspring will be. It may be that they will represent an intermediate type between the parental forms, in which case we might expect to find them distributed according to the laws of chance. But it might also be that they showed a tendency to reproduce one or the other of the ancestral types either pure or slightly modified, in which case the resulting curve would not conform to the laws of chance, but would show an entirely different character."

This view seems to be well taken and deserves our consideration all the more for the reason that the intermingling of different varieties of the same species is a well-known cause for variation. In view of cautionary signals such as the above, some comfort may perhaps be derived concerning our present material of observation from the fact above mentioned, that the preponderating racial type of man under investigation is undoubtedly Teutonic in character. At any rate, a sorting out of types different from the prevailing one being entirely out of the question, especially in the absence of all craniometric data, we have been obliged to follow the example of previous investigators, and will make a brief statement of the various methods employed in the present inquiry, hoping that whatever correction may have to be applied may apply to all alike in the future.

In Table I* are exhibited the observed distributions of the heights of 842 Naval Cadets aged eighteen years.

Average.-The average (A) was calculated according to Stieda, quoted by Porter, and which means the quotient obtained by dividing the sum ($\Sigma \alpha$) of the values (α) obtained in the individual measurements by the whole number of observations $(n): A=\frac{\Sigma \alpha}{n}$. The adjoining Table II will illustrate the method.

Mean or Median Value (M) can sometimes be found by the simple inspection of a series, if the number of observations is sufficiently large, but is more exactly determined by the following method, viz : The mean strength of squeeze of the right hand in Table II is obtained by adding the number of observations from above downwards until the sum cannot be increased by the next number in the column without exceeding half the total number of observations. Thus III is reached opposite 75 pounds; the next number below in the column (40) would make the sum 151 , which is more than half (II2.5) of the total number of observations (225). The mean is, therefore, greater than 75 but less than 80 pounds. Its exact position is found by interpolation. Half of the total number of observations is 112.5 , which is 1.5 more than the observations up to 75 pounds; 1.5 is 3.7 per cent of 40 , the observations at 80 pounds. Hence the mean is 75.46 .

[^0]Some statisticians take the average to be the nearest approach to the typical value, and this seems to be the case whenever the distribution of measurements follows the laws of chance; others look upon the mean to be the better value as representing the type, while still others hold that neither of these values in their present application represents the true type. Bowditch says: "If A represent the average value of all the observations, then the value of $M-A$ will be a measure of the direction and extent of the asymmetry of the curve $S T$ (curve of percentile grades), for this value will be zero when the curve is symmetrical, positive when the values of the lower percentile grades fall short of M more than those at the higher grades exceed it, and negative when the reverse is the case." An examination of his table and of the curves constructed from it shows that the asymmetry of the curves of percentile grades varies very much at different ages both in direction and amount. Bowditch states distinctly that "we must conclude, therefore, that the rate of annual increase, both in height and weight, is different at different percentile grades, or, in other words, that large children grow differently from small ones, and, moreover, that between the ages of eleven and fifteen years there is a striking difference in the mode of growth between the two sexes." We will refer to this point of the difference in the growth between tall and small children in some detail later on.

The Probable Deviation.-But neither average nor mean gives us any information as regards the manner in which the individual measurements of a series are distributed, and it is clear that two series with an identical mean or average may yet differ largely in respect of the dispersion of the individuals from the middle value, as the following numbers, taken from Porter, will show:

$$
\begin{aligned}
& 4,5,6, \text { I4, І5, іб. } \\
& 9,9, \text { то, го, Іт, і. }
\end{aligned}
$$

These have the same average (I).
A very convenient measure of the degree of dispersion or deviation of the individual members of a series from their common mean or average is that afforded by the "probable deviation."

Probable deviation (d) is that deviation from the middle value
which, in a large series of observations, is as often exceeded as attained (Lexis, Porter). According to Boas, the mean deviation is more accurate than the probable deviation, which is no doubt true. Inasmuch, however, as the relation between the two must be constant, and as it was one of our objects to make the results of our investigations comparable with those of previous investigators, the preference was given to the probable deviation which was calculated in accordance with the following approximation formula:

$$
d= \pm 0.8453 \frac{\Sigma \delta}{n} .
$$

In accordance with this formula all the individual deviations from the middle value (average or mean) of a series must be added together without regard to whether they be plus or minus, and the sum divided by the total number of observations as shown in Table III.

The observed distribution shown in Table III must now be compared with the distribution of the observations of an hypothetical series constructed according to the calculus of probabilities. The observed and the theoretical series should correspond, providing the causes of the deviations are purely accidental. Since it is absolutely required that such a comparison must be made before it can be known whether the observations in any series can be treated by the methods of the theory of probabilities, Table IV is appended.

This table apparently shows that slight deviations do occur, and Bertillon proved this some time ago. Bowditch, also, has shown that the curves, showing the distribution of statures and weights of children, do not follow the laws of chance, by having pointed out the fact that during the period of growth a constant difference exists between the average and the probable values, an observation which we have also been able to confirm, as will be seen later on.
In the preparation of Table IV, Stieda's table, reproduced by Porter, and shown as Table V, has been made use of.
In order to bring out the relation between the theoretical and the observed observations still more clearly, Fig. I is appended, which is a graphic representation of Table IV. It is perlaps rather remarkable that the deviations of the observed from the
theoretical curve are greatest about the mean, just where the numbers are largest and where, therefore, the agreement should be expected to be the closest.

Fig. 1.
The Calculated and Observed Distribution of the Height of 722 Naval Cadets aged 17 . Unbroken line: according to theory. Broken line: according to observation.

Percentile Grades.-Another method for calculating the distribution of the observations in a series is the percentile method of Galton. According to this method the distribution of the
observations is determined at intervals of 5 or io per cent from the median value.

Table VI shows the percentile distribution of 84 I Naval Cadets aged 18 years according to this method.

Perhaps the simplest and, at the same time, the truest means for showing the distribution of, for instance, the height (or any other dimension) in a given series would be to arrange the members according to increasing height at intervals of, say, one-half inch, expressing in numbers the members found between every half inch.

The Probable Error (E) of the average was determined by the formula $E= \pm \frac{d}{\sqrt{n}}$ (Stieda, Porter), where $E=$ the probable error of average,
$d=$ probable deviation of an individual from the average, $n=$ number of observations in the series.
Table VII represents the values E as calculated according to this formula.

As was mentioned before, for the sake of uniformity and easy comparison, we have, in the preparation and tabulation of our material, adhered as closely as it was possible to the methods used by Porter. The period of growth covered by our tables is from I_{5} to 24 years of age, or, practically, to the termination of the growing period, although rare instances have occurred in which growth has been noted to have taken place even later. But such instances as these are extremely rare and can scarcely be called the rule. The tables of both Bowditch and Porter practically stop at the age of 16 years, for males at least, because their numbers after that age are very small and therefore not so reliable as those of the preceding ages. It seemed, therefore, that the material at our disposal might in a way be well calculated to complement theirs, and for this reason, if for no other, it would be very desirable to tabulate it so as to make them both in all respects comparable. We have, accordingly, calculated for every year here represented the average and the mean, the median minus average values, the probable deviations and the probable errors, as well as the $5,10,20,30,40,50,60,70,80,90$ and 95 percentile grades. The 25 th and 75 th percentile grades, given in some of the tables, were obtained by dividing by two the sums of the 3oth and 20th and of the 8oth and 7oth percentile grades respectively.

Averages; Means; Median minus Average Values; Probable Deviations.

These values are shown in Tables VIII, IX, X, and XI, and a brief discussion of them seems now in order.

According to Porter, "the mean or average of the observations at any age in the period of growth is typical of the child at that age, and a comparison of the means at different ages will reveal the law of growth of the type. Again, the mean of the observations at any deviation from the mean of the whole number, for example of the height at a deviation of $+d$ from the mean, or, if Galton's method be employed, the height at any percentile grade, is the type of those who stand at a certain degree of deviation from the type of the whole number. Thus the types of tall and short, light and heavy children are secured. The types of the same degree of deviation from the mean at all ages are as comparable as the type of the whole number of observations, and reveal the growth of the typically tall and short, light and heavy children; but the comparison is less secure the greater the deviation from the mean, for the probable error is inversely as the square of the number of observations, and the number of observations rapidly diminishes on either side of the mean."

This beautiful conception regarding the theory of the growth of tall and short children, however, has been quite recently most severely criticized by Boas in "Science." Boas expresses himself as follows: "We know of a number of facts which show plainly that the assumption is incorrect. It has been shown in Dr. Bowditch's tables that Irish children are shorter than American children. If the position of the American child is expressed in percentile grades of the whole Boston series and that of the Irish child in the same manner, it will be seen at once that they diverge more and more with increasing age. Pagliani's measurements of Italian children and my own of Indian tribes of different statures bring out the same point still more strongly."

Under these circumstances it would seem, perhaps, the safer plan to look upon the averages and the means not as the types themselves, but merely as the indices to the true types.

A mere glance at the tables of the averages and means shows at once that development and growth from year to year is anything but uniform and regular.

The praepubertal acceleration of growth in height, at first fully established by Bowditch and later on confirmed by Kotelmann, Roberts, Erismann and Porter, is also well shown in our tables.

According to Erismann, the period of accelerated growth, beginning with the advent of puberty and ending with the full establishment of sexual maturity, is completed at age 18.

We would add that a period of retarded growth follows immediately upon that of accelerated growth, after which period the curve again gradually makes a more rapid ascent towards the completion of the intended height. From age 20 growth is exceedingly slow. This fact is well illustrated in Table XII, in which, for the sake of comparison, I have added my own figures and those given by Porter to a table taken from Erismann.

In all the tables given here the ages have been calculated from the nearest birthday and not from the last birthday. The years, therefore, do not in all cases indicate the absolute age to which these figures belong, on account of the unequal distribution of the numbers within each year, that is to say, as the numbers between 15 and 16 years of age increase there must be a larger number of individuals between 15 and $15 \frac{1}{2}$ years than between $14 \frac{1}{2}$ and 15 years, so that the average age must be slightly higher than 15 . The reverse must be the case, of course, when the numbers begin to decrease.

In connection with our averages and means, the measurements of Gould, taken during the war of secession, of a great many thousands of soldiers of different nationalities, are of some interest. The ages of the soldiers ranged between 3 I and 34_{\star} years, a time of life when growth in height may most certainly be assumed to have been completed. They are classified as follows:

Erismann believes that these different nationalities would not have reached this average height in their own native country, and that the different conditions of environment peculiar to this country caused this discrepancy. Topinard puts the average height of Frenchmen at 165.9 cm ., and Beddoe places the average height of Englishmen in their own home at 169 cm ., while the mean height of Italians, according to Topinard, ranges between I6I and 166 cm .

Roberts, speaking of the most favored classes of English people, in which class he includes naval and military men and university students, puts their average at 175.26 cm .

It was mentioned in the beginning of this paper that Naval Cadets, being appointed from every part of this country, ought to give us as nearly as possible an average that might be considered national in character. Now, the average height, as found in our tables of Naval Cadets, is 174.29 cm . at the age of 23, and the mean height is 174.04 . If we take the average of what Gould calls true Americans and Americans from the Southern States we obtain 174.30, which is within I-IOO of a centimeter the average height of our Naval Cadets. This agreement of these averages ought to go far in establishing the average height of Americans as at 174.3 cm . when fully developed and of the class which these records cover.

Examining our table of averages a little more closely we find:
I. Weight. In weight there is an almost steady increase from the 15 th to the 23 d year, amounting in all to 37 pounds, the annual increase declining, of course, as age advances.
2. Height.-The greatest addition to height standing takes place between I5 and i6 years of age, after which age the annual increase rapidly declines and growth is distinctly retarded about the 18th year, whence again a more marked increase occurs, which comes to a close at the age of 2 I ; a third upward curve leads to the attainment of the final growth.
3. Height sitting practically comes to a close at i9 years of age.
4. Height perineal, which is the height from the heel up to the perinaeum, closes at about the same age as the preceding.
5. Circumference of chest becomes highest at I9, to which it attains at rapidly advancing rates, and thence becomes steady or advancing only by small fractions of an inch.
6. Lung capacity, as ascertained by the spirometer, reaches its maximum at i9 and continues steady or varies only slightly.
7. Waist shows a continued increase up to the 23 d year, remaining, however, stationary from 19 to 21, and after that continues to increase more rapidly.
8. Span of arms.-Its greatest increase takes place between 15 and i6 years of age; it then increases slowly but steadily until the 23d year.
9. Vision.-We notice here the significant fact that both right and left vision show a positive increase up to the igth and 2oth year. This fact seems of some importance in apparently demonstrating that the course of study at the naval school, and the strain that is necessarily put upon the organ of sight, does not in itself tend towards diminishing the degree of distance vision in an otherwise normally constituted eye, but that, on the contrary, it is rather advantageous in slightly but perceptibly increasing the visual range. The slight decrease in distant vision noticed at the 23d year would indicate to my mind and to those acquainted with life at sea and its requirements on those actively engaged in it, the result of undue strain.
10. Hearing.-As to hearing, it is perhaps equally significant that that organ is affected quite perceptibly, but in the contrary direction; we may notice here a gradual but steady decrease for both sides during the entire period under observation, and, no doubt, the occupation of Naval Cadets would lead us to expect just such a result.
II. Squecze shows a steady increase, with but slight and unessential variations.

There exists some difference of opinion as regards the relation of the period of accelerated growth to puberty. If growth and procreation are, as they have been designated, antagonistic processes, we must agree with Bowditch, in that the period of accelerated growth is praepubertal in time. It would perhaps also follow quite naturally that the fullest establishment of maturity should be followed by a period of retarded growth, as is apparently shown in our figures of the annual growth. We do not find any great cause for controversy with regard to this question, nor do we consider it difficult to reconcile the opinions held by Bowditch on the one hand and by Pagliani and Carlier on the other. The beginning of the stage of puberty is not necessarily that of sexual maturity. Nature prepares the individual for sexual maturity and
the process of procreation by inaugurating changes that are advantageous to the species and by causing increased development in various dimensions. This sudden wave of normal development completed, it results in sexual maturity becoming fully established and functional, and with its full establishment, growth in the different dimensions takes a short and much-needed rest, during which the organism at large sympathetically accommodates itself to the new order of things.

It is more than merely probable that the exact time of life when this praepubertal development begins is, within a certain limited range, different for every individual even of the same type and social class. In some it may come on a little sooner, in others a little later, so that these two phenomena must neutralize each other to a certain extent by this overlapping, and the probable result must be that the absolute praepubertal increase is actually larger than it is usually recorded.
Neither the average nor the mean gives us any information as regards the manner in which the individual measurements of a series are distributed, and it is clear that two series with an identical mean or average may yet differ largely in respect of the dispersion of the individuals from the middle value, as was shown above.

According to Boas, the mean deviation is the more accurate of the two, and which is no doubt true; but inasmuch as its relation to the probable deviation would be in all respects constant, and as it was one of our objects to make the results of our investigations comparable to those of previous investigators, the preference was given to the probable deviation.

Table VIII represents the probable deviations for the items that were available for calculation. It will be seen by this table that they are small, even when compared with those given in Porter's tables, which indicates that one-half of all the observations deviate but little from the middle values, and which fact is considered to be one of the fundamental attributes of all deviations due to accidental causes.

It is extremely doubtful from present appearances whether any further significance will ever be attached to the percentile grade system in the future than that of using it merely as a means for classifying anthropometric facts in percentages.

Boas, in his latest contribution to "Science," March, 1895,
states that if the assumption is made that the same children remain on the average in the same percentile grades, a certain very complex law must follow; for any different law of growth, children would change from one grade to another. And Porter remarks that in order to determine the relation of the growth of the individual to the growth of the type we must have material that admits of the application of the individualizing method, and that the present state of our knowledge of the subject does not permit us the prediction of future growth.

I believe that the prediction of future growth, even after having accumulated a sufficient amount of material which will permit of the application of the individualizing method, will always form a difficult if not doubtful task, for the reason that we are unable to predict, at the same time, the causes that will influence individual growth.

In the records at my disposal I find that their continuity is often broken by the omission of one or more items for one or more years in succession. This may be due to an oversight on the part of the examiner, or to a temporary inability on the part of the examinee to submit to that part of the examination. Hence if a very large number of such continuous individual records were required, even the material at my disposal would not be such as to definitely settle this question practically; and if I were to rely on broken records and put a larger number of these together and average them, I would simply arrive at about the same curves that are presented as the results of the whole number of observations. In fact, our averages and means and the deviations therefrom are the results of just such records, about 30 per cent of them being continuous and, with the exceptions mentioned, unbroken for the period of growth covered by them.

However, on searching these records I was able to find between 35 and 40 continuous records of individual cadets, each beginning with the 25 th percentile grade in height as well as in weight, either at 15 or 16 years of age, and as many such as began with the 75 th percentile grade in the same items and at the same ages. These, when examined individually and compared to the average progression of their respective percentile grades obtained from the whole number of observations that are recorded here, revealed the fact that not a single one of them remained in the grade to which it belonged.

The exact number of individual records belonging to the 25 percentile grade as to weight is 40 , and that of those belonging to the $75^{\text {th }}$ percentile grade is 36 . As to height standing, there were 39 belonging to the 75 th and 37 belonging to the 25 th percentile grade.

Fig. 2.
Height.-Percentile and Individual Curves Compared.

Continuous lines: normal, 75,50 and 25 per cent.
Broken lines: individual, 75 and 25 per cent
The averages of these records have been tabulated together with the 25 th, 50th and 75 th percentile grades obtained from the whole number of observations, viz. Table XIII.

The relation which these individual averages bear to the general averages is best seen in Figs. 2 and 3 plotted from the tables.
The 25th percentile individual curve of both height and weight shows a marked tendency to approach the both percentile grade curve or the mean of all the observations. As to height alone, the 75 th percentile individual curve likewise, but not so directly as the 25 th percentile curve, inclines toward the curve of the
middle value. In both the height-curves there is, it would seem, a strong aim at the middle value towards the end of the period of growth.

The curves, shown in Fig. 2, and a detailed comparison of the individual records with the normal percentile grades of their class, would go far in convincing me of the fact that individuals do not necessarily remain in the percentile grades in which, at some time during their period of growth, they may happen to be found.

Fig. 3.
Weight.-Percentile and Individual Curves Compared.

As, however, this question seems to be one of the greatest importance, and inasmuch as a definite settlement of all doubts in regard to this matter would be looked upon as a positive advance of our ideas of growth, we have attempted to enter a little more into the details of the matter.

We began by making a somewhat larger collection of individual and continuous records. By allowing a broader limit than a certain percentile grade to begin with, we have succeeded in accumulating the data exhibited in the three Tables XIV, XV and XVI, and have divided them into three groups for reasons
which will become more apparent as we proceed. It was perhaps to be expected that growth for tall boys would be found to be different from what it is for short ones, and these tables seem to prove this suspicion to be absolutely correct. When the averages given in these three tables are compared it becomes very evident that there is a well characterized law of growth for each of the three groups, that is to say, it is seen that the short boys grow more rapidly than the tall boys and also more rapidly than middlesized boys during the period under consideration. Thus we find that the short boys grow 4.2 inches, the middle-sized ones 3.3 inches, and the tall ones only 2.0 inches during a period from 16 to 22 years of age. Previous conditions may perhaps often determine the growth that follows, and the smaller a boy at a certain age during the period of growth the greater will be his chances for growing during the years that follow, while tall boys are very much more apt to have their growth completed earlier than small boys are. Still it seems we cannot deny that present environments and causes also continue to exert an unmistakable influence on growth no matter what the preceding ones may have been.

In order to bring out the difference in the growth of the several groups still more clearly we have made certain selections from the larger tables between definite limits, and have calculated the averages and the probable deviations from different years. The selection was made at every year between the limits indicated on the tables, and then the number of individuals thus selected was carried straight through to the twenty-second year, as shown in Table XVII. It will be noticed by a glance at the table (XVII) that while the averages increase from beginning to end as well as from above downwards during the same years or in the direction from the lowest to highest average, the probable deviations increase only from year to year; but when read from above downwards they very rapidly decrease. In the tall group the averages increase but slightly from year to year in each group and from within the limits indicated; but when read from above downwards they tend to decrease in spite of the limits from which they were started growing steadily higher. The limit of this decrease, however, is soon reached and the averages increase correspondingly. The reason for this behavior in the averages is that the number of those that cease growing increases rapidly and consequently drop out of the succeeding series which contains naturally the tallest and the fewest.

The probable deviations always show a rapid increase between the first two years of every new series; they regularly decrease from above downwards and approach more nearly the average.

Fig. 4.
Annual Growth of Average of whole number of obs. compared with that of three selected individual groups.

This increase in the probable deviation between the first two years or at the beginning of each series is, no doubt, due to the rapid scattering of the members in each series, and plainly shows that they do not retain the same relation to each other in the next series in which they were contained in the preceding series, and which is additional proof of the fact that percontile grades do not control grozuth.

The average values, showing the absolute annual increase, are not necessarily the most frequent values, as is well known, and consequently we must find out something of the individual growth and their numerical proportion and distribution which produce this average.

For this purpose we have calculated the individual growth between two successive years from our original Tables XIV, XV and XVI and tabulated the results represented in Table XVIII. This table of the individual absolute annual increases in height shows at once the distribution of growth, the most frequent
values, and also, in a very striking manner, the number of those who cease to grow and at what age. The difference in the growth between tall and short boys is here brought out very strongly. The figures show as clearly as one could wish that tall boys are much more likely to have completed their growth at an earlier age than short boys, and also that short boys not only grow more rapidly and more extensively than tall boys, but also that they continue to grow up to a later age than do tall boys.
The rapidly increasing numbers at zero, to be seen on Table XVIII, prove conclusively that tall boys have completed their adult stage of development in height at an earlier age than short ones.

Fig. 5.

Proboble Devratures compared.

In perfect agreement with this conclusion would seem to be the probable deviation as shown in Fig. 5. In small boys this deviation is seen to rise much higher than in tall ones.

Percentile Grades in Height Standing, Weight, Height
Sitting, Perineal Height, Circumference of Chest, Lung Capacity, Span of Arms, Waist Measure, and Right and Left Hand Squeeze.
The percentile grades in these various dimensions are presented in Tables XIX-XXVIII, and those of height standing and weight are also graphically represented in Figs. 6 and 7 respectively. With the help of these tables and plates the percentile rank of any individual in any of the above-mentioned dimensions may be easily and quickly determined.

Supposing, for instance, the percentile rank of a cadet aged 17 years and weighing 134 pounds was desired. A horizontal line is drawn from 134 in the column of weights on the left of the plate to the curve of age 17 , and a perpendicular is dropped from the

Fig. 6.
Heights of Naval Cadets.-Percentile Grades.

point of intersection to the scale of percentile grades at the bottom of the plate. The perpendicular falls at 75 per cent, and hence the cadet in question is heavier than 75 per cent of the cadets of his age and lighter than the remaining 25 per cent.

Likewise we may find the increase at any percentile grade dur-
ing one or more years by measuring the distance between the curves at that grade and comparing that distance with the pound scale, which will give the number of pounds. In the same plate the gain in weight of the 50 percentile grade cadet during the years of 15 and 18 is 24 pounds, and the gain in weight of the 8oth percentile grade cadet during the same period is found to be 25 pounds.

Fig. 7.
Weight of Naval Cadets.-Percentile Grades.

In a somewhat similar manner the percentile rank of any cadet at any age in any dimension included in our tables may be found by a reference to these tables. Their value, therefore, as an aid to the annual examiner of cadets may easily be estimated.

Rate of Growth.

The ten tables XXIX-XXXVIII represent in percentile grades the absolute annual increase in the various dimensions as calculated from the whole number of observations and without regard to whether they are large or small. By absolute annual increase is meant the gain in height or weight during the preced-
ing twelve months, obtained by subtracting the average or median height or weight at, for instance, 18 from that at 19 years.

On account of the unequal distribution of the numbers between the different years, the ages given in the column are not absolutely correct, but the error is so small that it may be neglected here.

It will be noticed that the rate of increase in the various dimensions differs considerably. The subject of the correlation of the different dimensions to one another at the different ages and in individuals of different statures is still to be determined. To settle this question we need a large number of individual records.

Fig. 8.
Perineal Height of Naval Cadets.-Percentile Grades.

As regards weight, we notice a steady decrease in the annual amount of gain from the 15 th to the 2 Ist year, which decrease becomes most marked from the Igth year on upwards, and in the highest percentile grades is even negative.

Height once attained is not so easily lost, but weight is easily lost as well as quickly regained.

As to height, the greatest annual increase is noticed to take place between I 5 and i6 years of age, the lowest between 18 and i9 years. In some of the highest percentile grades it apparently becomes slightly negative as it does in the weight tables; this is more especially shown between the 2 ist and 22 years, but also noticeable between the 20th and 2ist years. The reason for this negative annual increase is well explained by our Tables XIV, XV and XVI, which show clearly that just about the 2Ist year our averages are less reliable than they are at other ages, and therefore our annual growth tables do not in the least render improbable the fact that height once attained is rarely if ever lost.

Weight and strength, on the other hand, are easily lost and rapidly regained, and any decrease in these may therefore be easily explained.

Relative Annual Increase.

The ten tables XXXIX-XLVIII represent in percentile grades the relative annual growth in the different dimensions under discussion. Relative annual increase means the increase for any year divided by the average at that year. Thus the relative annual increase in weight at age 18 is the difference between the average weight at 17 and 18 divided by the average weight at 17 .

According to Porter (loc. cit.) the relative annual increase gives a truer idea of growth than does the absolute annual increase, because of the latter being entangled with the size of the individual measured. Porter also states that " the absolute annual increase is commonly greater in a big boy than in a small boy, and yet the rate of growth may be the same." This is no doubt true for that period of growth which is covered by the material worked out by him. For a later period, from 55 to 22 years, the rate of growth for big boys is both absolutely and relatively smaller than for short boys. This is not only well shown in our percentile height-curves on Fig. 6, plotted from the whole number of our observations, but also in our individual Tables XIV, XV and XVI, as well as in Fig. 4.

So far as weight is concerned these tables show the same gradual decrease in the annual rate as the height tables. This decrease is here most abruptly marked between 19 and 20 , becoming negative with the 2Ist year.

Tables XLIX-LVIII.

The material here presented would admit of still further elaboration. The dimensions of correlated parts and their ratios to one another ought to be worked out. The difficulty, however, that presents itself here is the same that was encountered in connection with the rate of growth and its difference between tall and short boys. The facts so far would indicate that, for instance, the ratio that exists between growth in height and chest girth is differ-

Fig. 9.
Chest Girth of Naval Cadets.-Percentile Grades.

ent for short boys from what it is for tall boys. This work must be done on material admitting of the application of the individualizing method and separately for small, middle-sized and tall individuals, to be of value and conclusive.

The tables XLIX-LVIII, however, will prove useful, admitting, as they do, of ready reference and comparison and containing a great deal of information in a small space.

APPENDIX.

Dimensions.	Probable Error of Average : $E= \pm \frac{d}{\sqrt{n}}$,									
	Unit of Measurement.	Age at nearest Birthday and Probable Eiror.								
		I5	16	17	18	19	20	21	22	23
Weight, (nude).........	pounds.	0.922	0.531	0.370	0.400	0.360	0.371	0.456	0.500	- 768
Height, standing	inches.	0.136	0.050	0.059	0.057	0.054	0.060	0.071	0.086	0.099
Height, sttting.	inches.	0.088	0.048	0.032	0.027	0.035	0.027	0.024	0.040	0.036
Height, perineal	inches.	0.131	0.054	$0.0+5$	0.040	0.031	0.038	0.070	0.062	0.073
Chest circumfe	inches.	0.123	0.066	0.044	$0.0+3$	0.03^{8}	0.048	0.052	0.065	0.079
Lung capacity	cb. inches.	2.306	1.091	0.820	0.732	0.642	0.834	0.940	1.150	1.125
Waist circumferen	inches.	0.095	0.052	$0.0+2$	0.044	0.044	0.052	0.062	0.070	0.093
Span of Arms	inches.	0.13°	0.091	0.054	0.060	0.062	0.072	0.076	0.108	0.093
Vision, R, E.	feet.	0.270		-. 103	0.108	0.120	0.163	0.103	0.163	0.243
Vision, L. E.	fer	0.231	0.132	0.111	-. 108	0.115	0.133	0.127	0.172	0.233
Hearing, R. Ear	feet.		0.069	0.050	0.038	0.054	0.100	0.076	0.247	0.238
Hearing, L. Ear.	feet.			0.036	0.036	0.027	0.073	0.110	0.210	0.234
Squeeze, R. H.	pounds.	0.800	0.367	0.273	0.245	0.274	0.316	0.365	0.449	0.421
Squeeze, L. H	pounds.	0.790	0.367	0.274	0.250	0.273	0.322	0.327	0.463	0.466

Table VIII.

Probable Deviation (a) from the average: $d= \pm 0.8453 \frac{\Sigma \delta}{n}$, where $\Sigma \delta=$ Sumation of average.

Dimensions.	Unit of Measure.	Age at nearest Birthday and Probable Deviation.								
		15	16	17	18	19	20	21	22	23
Weight.	kilos. pounds.	4.808 10.6	4.790 1056	4.508 9.94	${ }_{\text {5. } 116}$	4.472 9.86	4.277 9.43	4.599 10.14	4.114 9.07	5.357 11.81
	c. m.	4.97	3.96	4.03	4.20	3.81	3.81	4.01	3.96	3.83
Height, standing.	inches.	1.96	1. 56	1.59	1.68	1.50	1.50	1.58	1.56	1.51
	c. m.	2.56	2.43	2.18	2.05	2.49	1.77	1.37	1.88	1.44
Helght, sitting	inches.	1.01	0.96	0.86	0.81	0.98	0.70	0.54	0.74	0.57
	c. m.	3.83	3.27	3.17	3.09	2.18	2.49	4.24	2.89	2.84
Height, perineal	inches.	1.51	1.29	1.25	1.22	0.86	0.98	1.67	1.14	1.12
	c. m.	3.60	$3 \cdot 37$	3.12	3.20	2.64	3.07	2.94	2.99	3.04
Circumference C	inches	1.42	1.33	1.23	1.26	$1.0+$	1.22	I.16	1.18	1.20
	cb. c. m.	427.	355.	360.	373.	320.	376.	330.	330.	312.
Lung capacit	cb. inches.	26.1	21.69	22.8	22.87	19.6	21.19	20.84	20.83	19.05
	c. m.	2.76	2.61	2.87	$3 \cdot 30$	3.07	$3 \cdot 37$	3.50	3.25	3.60
ircumference Wai	inches.	1.09	1.03	1.13	I. 30	1.21	I. 33	1. 3^{8}	1.28	1.42
	c. m.	2.99	4.59	4.41	4.44	$4 \cdot 36$	4.69	4.26	5.02	3.60
Span of Arms......	inches.	1.18	1.81	1.74	1.75	1.72	1.85	1.68	1.98	1.42
	meter.	.917	.183	. 847	. 956	1.002	1.26I	1. 106	. 927	1.130
Vision, R. E.	feet	3.09	0.6	2.78	3.14	3.29	4.14	3.63	2.95	3.71
	meter.	. 811	. 799	. 914	. 950	. 980	1.029	. 857	. 947	t.08ı
Vision, L. E	feet.	2.66	2.62	3.0	3.12	3.21	$3 \cdot 38$	2.81	3.12	3.55
	meter.		. 420	. 411	$.5^{15}$. 463	. 771	. 515	1.365	1.106
Hearing, R. Ear.	feet.	0.0	1. 3^{8}	1.35	1.69	1. 52	2.53	1. 69	$4 \cdot 48$	3.63
Hearing, L. Ear	meter.	00	0.0	- 298	.317 1.04 3	.231 0.75	.564 1.85	.741 2.43	1.161 3.81	1.181 3.88
	kilos.	4.136	$3.3{ }^{11}$	$3 \cdot 325$	3.225	3.411	3.643	3.679	3.68 x	2.912
Squeeze, R. H..........	pounds.	9.12	7.30 10	3.33 7	7.119	$3 \cdot 411$	8.03	8.11	8.14	6.42
	kilos.	4.136	$3 \cdot 316$	$3 \cdot 370$	3.273	3.370	3.715	3.293	3.810	3.220
Squeeze, L. H....	pounds.	9.05	$7 \cdot 31$	$7 \cdot 43$	7.22	7.43	8.19	7.26	8.40	7.10

Table IX.
Values of the Averages in the following dimensions.

Table X.
Median Values in same dimensions as Table IX.

		$\frac{\stackrel{\pi}{60}}{\frac{1}{4}}$									$\begin{aligned} & \text { Un } \\ & \text { Nun } \\ & \text { Un } \\ & \text { Un in } \end{aligned}$
		49.216	163.29		84.12	76.07	2.920	63.70	163.83	27.21	25.58
15	131	108.5	64.290		33.125	29.952	178.2	$25 \cdot 12$	$64 \cdot 5^{\circ}$	60.0	56.4
		53.025	167.13	$85 \cdot 34$	85.92	$7^{8.99}$	3.170	$65 \cdot 45$	169.67	30.84	
16	395	116.9	65.805	33.500	33.830	31.101	193.5	25.77	66.80	68.0	65.
		56.610	170.18	86.81	87.88	81.25	3.42 I	67.18	172.46	34.10	$33 \cdot 33$
17	722	124.8	67.000	34.180	34.600	31.895	208.8	26.45	67.90	75.2	73.5
		59.780	171.78	87.96	88.90	83.00	$3 \cdot 588$	69.13	174.11	35.14	34.01
18	841	131.8	67.633	34.630	35.007	32.685	219.0	27.22	68.55	77.5	75.0
		62.14	171.83	89.07	89.50	84.45	3.736	70.10	175.33	37.19	36.96
19	750	137.0	67.651	35.055	35.243	33.250	228.3	27.60	69.03	82.0	81.5
		62.823	173.35	89.53	89.68	85.29	3.818	7 I .06	176.27	38.00	37.19
20	645	$1{ }^{1} 8.5$	68.252	35.254	36310	$33 \cdot 588$	233.2	27.98	69.40	83.8	82.0
		63.004	173.25	90.01	89.76	85.47	3.801	70.33	177.62	38.91	$3^{8 .} 3^{2}$
21	493	138.9	68.215	35.445	$35 \cdot 340$	33.656	232.2	27.69	69.93	85.8	84.5
		62.914	173.60	89.71	90.14	85.77	3.883	70.63	176.78	38.55	38.00
22	329	$13^{8.7}$	68.352	35.320	$35 \cdot 492$	33.776	$237 \cdot 9$	27.81	69.60	85.0	83.8
		62732	174.04	89.73	90.55	86.28	3.872	70.84	174.62	$40 \cdot 37$	$3^{8.55}$
23	232	138.3	68.522	$35 \cdot 333$	35.654	33.873	236.3	27.89	69.93	89.0	85.0

Table XI.
Median minus Average Values.

Dimensions.	Unit of Measurement.	Ages at nearest Birthday and Median minus Average Values.								
		15	16	17	18	19	20	21	22	23
Weight.	pounds.	+1.5	- 1.1	0.2	1	2.7	- 2.7		- 2.6	-5.7
Height, standing	inches.	$+0.490$	0.125	-0.05	+0.343	-0.249	-0.298	-0.385	-0.098	- 0.098
Height, sitting.	inches.		1.000	- 0.820	- 1.120	- 1.445	-0.516	-0.555	-0.680	-0.667
Height, perineal	inches.	+ 1.125	$+0.630$	+0.600	+0.407	- 0.657	+0.310	+ 1.34°	+0.492	+0.645
Chest circumfere	cb. inches.	-0.548	-0.569	- 0.605	-0.775	- 1.736	-0.712	- 0.644	- 0.574	- 0.927
Lung capacity.........	cb.inches.	- 4.8	7.5	8.2	7.0	- 11.7	5.8	- 8.8	-8.1	- 5.78
Waist circumference....	inches.	+0.03	-0.23	- 0.97	0.68	- 1.00	- 0.64	-0.99	- 0.99	- 5.7
Span of Arms...........	inches.	+0.60	0.53	-0.10	0.70	- 1.09	0.70	-0.74	- 0.60	- 1.31
Squeeze, R. H	pounds.	- 1.0	-3.5	- 2.27	-3.5	- 3.0	-3.2	-2.2	- 1.5	+2.4
Squeeze, L. H	pounds.	- 3.6	$1-5.0$	-3.1	- 5.0	- 1.5	-3.0	1-2.9	- 2.0	+0.3

TAble XII.
Showing Annual Growth of different Nationalities.

Ages.	$\begin{aligned} & \text { Beyer, } \\ & \text { c. m. } \end{aligned}$	Bowditch, c. m .	Kotelmann, c. m .	Roberts, c. m .	Erismann, c. m .		rter, m.
13-14		6.80	5.79	5.4	3.48	Av. 5.67	Mean. 5.57
14-15	2.54	6.10	$5 \cdot 31$	$5 \cdot 1$	$5 \cdot 45$	6.32	6.39
15-16	$5 \cdot 41$	6.90	$7 \cdot 46$	5.6	6.53	$5 \cdot 37$	6.02
16-17	2.84	2.10	5.25	6.7	$5 \cdot 38$	4.86	4.73
17-18	0.60	1.60	1.49	3.9	3.19	$5 \cdot 28$	4.50
18-19	I. 54	1.40		I.9	1.80		
$19-20$ $20-21$	1.90 .12			1.8	0.80		
21-22	. 38						
22-23	. 43						

Table XIII.
Comparison of Normal * with Individual Records.
I. - Height.

Percentile Grades.	Ages at nearest Birthday.						
	15	16	17	18	19	20	21
Normal......... 75	66.20	67.61	68.70	69.29	69.51	69.86	$\underline{69.83}$
Individual...... 75	66. 10	67.45	68.25	68.76	69.10	69.15	69.80
Normal......... 5°	64.29	65.85	67.00	67.63	67.65	68.25	68.21
Individual 25	62.20	64.44	65.62	$66.7{ }^{\circ}$	66.65	67.62	68.07
Normal......... 25	62.05	64.14	65.50	66.18	66.54	66.75	68.74

II. - Weight.

[^1]Table X1V.
Individual and Continuous Measurements in Height, Standing. Tallest Group.

	Inches at the following years.														
No.	16	17	18	19	20	21	22	No.	16	17	18	19	20	21	22
1	68.4	70.0	70.5	71.0	71. 1		71.0	34	68.3	69.5	70.7	71.1	7 I .2		71.2
2	68.0	69.3	69.5	69.5	69.5		69.6	35	69.2	$69 \cdot 3$	69.7	70.2	70.4		70.4
3	67.4	68.0	68.6	68.3	68.3		68.3	36	68.0	68.5	69.0	69.0	69.0		óg. 1
5	69.0	69.7	70.4	70.4	70.5		70.5	37	67.0			72.4	73.4	73.4	73.2
5	68.0	68.5	68.7	$69 \cdot 3$	69.4			38	68.5	69.2	69.2	69.4	69.7	70.0	70.1
6	$67 \cdot 4$	68.0	68.2	68.3	68.3		68.5	39	68.0	69.5	71.0	72.0	72.1		
	68.2	68.6	68.7	69.0	69.1		69.1	40	67.4	68.1	68.4	68.4	68.6		68.6
8	68.5	692	69.3	69.5		69.7		41	68.6	70.3	70.5	71.4	72.2		72.4
9	68.5	69.2	69.4	69.2	69.2		69.5	42	68.5	69.4	69.4	69.4	69.6		70.0
10	67.2	67.6	68.0	68.0	68.1		68.0	43	68.2	69.2	$69 \cdot 5$	70.0	70.2		70.4
11	67.2	67.2	67.5	68.0				44	68.0	694	69.7	70.2	70.4		70.2
12	68.0	68.6	t9.0	69.1	69.2		69.3	45	67.6	69.2	70.3	70.6	70.4		70.7
13		68.0	68.4	68.6	68.7	68.7	68.7	46	67.0	67.2	68.0	68.0	68.1		68.0
14		66.7	67.1	67.4	67.4	67.4	67.4	47	69.0	70.3	70.4	70.4	70.4		70.6
15	67.2	68.3	69.3	69.5	69.6	70.1	70.2	48	68.4	69.1	69.6	69.7	69.6		69.6
16	68.2	68.6	69.0	69.2	69.4		69.4	49	67.5	68.2	68.2	68.6	68.7		69.0
17	69.0	70.2	71.0	71.3	71.5		71.4	50	68.3	692	70.0	70.0	70.5		71.0
18	68.7	69.3	69.7	69.7	69.7		69.7	51	68.0	69.0	70.0	70.0	70.3		70.2
19	67.2	68.1	68.1	68.3	68.2		68.4	52	67.5	67.6	68.2	68.2	68.5		
20		67.0	67.2	67.5	67.7		67.6	53	67.1	67.6	67.6	67.6	67.7		68.4
21	68.6	69.4	69.4	70.0	70.1		70.1	54	67.4	68.2	68.7	69.4	69.4		69.6
22	69.0	69.2	69.2	69.2	69.2		69.2	55	67.6	68.3	69.2	69.3	69.6		69.6
23	67.0	68.1	68.5	68.7	69.0		69.1	56	67.0	67.4	67.7	68.1			68.1
24		66.3	69.4	70.1	70.4	70.4	70.5	57	67.2	67.6	67.7	68.1	68.4		63.4
25	68.2	69.4	71.0	71.4			71.4	58	68.2	69.2	69.6	70.0	70.2		70.2
26	67.7	68. I	68.2	68.3		68.4		59	67.2	68.2	69.1	69.7	69.7		70.2
27	69.4	70.4	71.2	71.2	71.5		71.6	60	68.0	68.5	69.3	69.3	69.6		70.0
28	67.4	68.4	63.4	69.0	69.4		70.0	61	67.2	63.3	69.0	69.3	69.3		69.4
29	68.2	69.4	70.2	71.2	71.2		71.2	62	69.0	69.6	70.3	703	70.6		70.6
30	69.0	69.0	69.0	69.0	69.5		69.4	63	68.0			71.2	71.2	71.2	71.7
31	67.0	68.3	68.7	69.0	69.1		69.1								
32	67.0	68.0	68.6	68.6	69.0		69.2			68.7	69.2	69.5	69.8		70.0
33	67.2	$67 \cdot 4$	68.0	68.6	68.6		68.6	$\pm d$	0. 0.49	0.62	0.68	0.76	0.79		0.75

Fractions in columns are eighths; the averages and deviation represented in inches and tenths.
Table XV.
Individual and Continuous Measurements in Height, Standing. Middle-sized Group.

No Inches at the following years.															
1	65.4	66.1	66.7	67.1	67.3			38	65.0	65.2	65.4	65.4	$5 \cdot 4$		
2	66.0	67.0	67.3	67.6	67.5	67.5		39	65.3	65.7	66.2	66.2	66.2		60.4
3	66.0	68.4	70.7	72.0	72.5		72.5	40	65.4	67.1	67.4	68.0	68.0		68.0
4		66.4	66.6	66.6	66.6	66.6	67.0	41	65. I	67.0	67.4	67.4			
5	66.0	67.0	67.4	67.4	68.		68.1	42	66.7	67.2	67.2	67.2	67.5		
6		67.0	67.2	67.2	67.5	67.6	67.6	43	65.5	66.5	67.2	67.2		$67 \cdot 3$	
$\stackrel{7}{5}$		65.1	65.4	65.7	65.7	65.5		44	65.4	67.0	67.6	68.0	68.4		68.4
8	65.6	68.1	69.0	69.7	69.7			45	65.4	67.0	67.4	68.1	68.5		68.5
9		66.2	67.1	68.2	68.6	68.7	68.6	46	65.2	66.2	67.2	67.2	67.5		
10		66.2	67.1	68.2	68.6	68.7	68.6	47	65.1	66.0	66.2	66.3	66.4		66.5
11	65.3	66.2	66.5	66.6	67.0	67.0		48	65.4	67.0	69.0	69.5	69.7		69.6
12	65.5	66.3	66.5	66.5	66.6		66.6	49	66.0	67.3	68.7	69.6	69.7		69.6
13	66.2	67.5	68.2	68.5	68.2		68.5	50	65.4	68.4	69.0	69.3	69.4	60.4	69.4
14		65.2	65.5	65.6	65.7	65.7	65.7	51	66.2	66.4	67.3	67.3		67.4	
15	65.0	66.0	66.2	66.3	66.3		66.3	52	66.2	66.4	67.4	67.4	67.4		
16	66.0	67.0	67.2	67.6	67.7		677	53	66.6	68.2	68.4	69.0	69.0		69.0
17	66.5	67.4	68.2	68.2	68.6			$5 \pm$	66.5	67.1	67.1	67.1	67.1		67.4
18	65.1	65.7	66.4	66.4	66.4		66.4	55	65.3	66.4	67.0	67.3	67.4	67.4	67.5
19	65.0	65.6	66.6	66.6	66.6		66.6	56	65.6	67.0	67.4	68.0	68.2	68.8	68.
20	66.0	66.4	66.6	66.6	66.6		66.6	57	65.2	65.6	66.0	66.5	66.7	67.0	. 67.0
21	66.4	67.0	67.5	68.0	68.0		68.0	58	66.4	674	67.7	68.1	68.4		68.5
22	66.4	67.0	67.3	67.5	67.4		67.4	59	$6=.3$	66.4	67.2	68.0	68.2		68.5
23	66.2	68.0	¢8.6	69.0	69.0		69.0	60	66.1	67.3	67.7	67.4	67.2		$67 \cdot 3$
24	66.1	67.3	68.1	69.0	69.0		69.0	61	66.6	67.2	68.5	68.5	68.7		69.
25	66.1	66.5	67.0	67.0	67.0		67.2	62	66.4	68.2	69.0	69.6	70.2		70.4
26	$6_{5.1}$	$65 \cdot 4$	65.4	$65 \cdot 4$	65.5		67.5	63	$65 \cdot 2$	66.0	67.0	67.0	67.2		$67 \cdot 3$
27	66.3	67.3	67.5	67.4		67.5		64	$65 \cdot 2$	67.0	68.0	68.3	68.3		68.4
28	65.2	$65 \cdot 5$	66.5	67.0	67.6			65	65.6	66.4	66.6	66.7		66.7	
29.		65.0	66.4	67.2	67.3	67.5	67.5	66	65.4		67.0	67.0	67.2		67.2
30	66.1	$67 \cdot 5$	68.6	68.7	63.7		69.0	67	65.6	65.6	65.6	66.2	66.0		66.2
31.	65.2	65.5	66.5	67.0	67.6			68	65.0	67.0	67.5	68.0	68.0	68.0	68.2
32	65.0	664	67.2	67.3	67.5		67.5	69	66.4	67.2	68.3	68.7	69.2	69.4	69.4
33	66.7	67.5	68.6	68.7	68.7		69.0	70	65.5	66.2	67.1	67.0		67.2	
34		66.0	68.0	63.4	68.6	69.	69.4	71	65.3	66.7	67.6	68.2	68.3	68.6	68.6
36	65.2	66.0	67.0	${ }^{7} 7.0$	67.3		67.3		. $65 \cdot 7$	66.7	67.4	67.7			63.0
37.	66.1	$67 \cdot 7$	69.2	70.0	70.2			$\pm d$	$=0.3^{2}$	0.54	0.55	0.77	0.86		0.90

Table XVI.
Individual Continuous Measurements in Height, Standing. Short Group.

No.	16	17	18	19	20	21	22	No.	15	17	18	19	20	21	22
1	62.1/2	65.0	67.6	69.5	70.2		70.6	28	60.4		64.2	65.2	66.7	67.0	67.0
2	63.7	65.2	67.0	67.7	68.2		68.2	29	62.6	63.5	64.4	65.0			
3	64.4	65.3	65.7	66.1	66.2		66.2	30	63.2	64.4	$65 \cdot 7$	66.2	66.5		66.5
	$64 \cdot 4$	67.2	67.6	68.2	68.3		68.4	31	62.4	64.5	66.6	67.2	67.4		67.5
5	63.7	65.2	66.2	66.5	66.6		66.7	32	64.2		66.5	$67 \cdot 4$	67.7		68.0
6	64.2	67.1	68.6	69.5	69.5		70.1	33	62.2		65.2	65.2	65.6		66.0
7	63.0	64.0	64.4	65.0	65.2		65.4	34	63.0	65.2	66.0	66.3	66.6		
8	64.0	66.2	68.5	70.0	70.4			35	62.1	64.6	65.6	66.1	66.4		67.0
9	64.0	65.0	65.4	66.0	66.2		67.4	36	64.0	64.5	65.3	65.4	66.0		66.0
10	64.6	$65 \cdot 7$	66.6	67.3	67.4		67.5	37	62.7	65.2	66.4	66.6		67.0	
11	63.2	65.0	66.7	67.5	68.0		68.1	38	61.0	62.1	65.0	67.3	68.5		69.1
12	64.0	65.6	$67 \cdot 5$	68.2	68.5		68.4	39	65.1	67.7	69.1	69.5		69.7	
13	64.1	65.6	67.5	68.2	68.5		68.4	40	63.0	64.2	65.2	$65 \cdot 3$	65.6		66.
14	63.7	$64 \cdot 3$	$64 \cdot 3$	$64 \cdot 7$	64.7		64.6	41	64.2	65.0	66.0	66.4	66.3		66.6
15	$64 \cdot 4$	66.4	67.6	68.1	63.4		68.4	42	62.5	65.4	68.4	69.7	69.7		70.5
16	$64 \cdot 4$	65.1	65.3	65.6	66.1		66.4	43	64.0	66.1	67.2	68.0			
17	$64 \cdot 3$	65.6	66.6	67.1	67.1		67.2	44	62.0	$63 \cdot 3$	$64 \cdot 5$	65.2	65.2		65.3
18	6r.0	62.7	64.4	65.2	66.1		66.3	45	63.5	65.2	66.6	67.4	67.6	67.6	67.6
19	61. 3	63.5	65.0	65.5	65.6		65.7	46	$64 \cdot 5$	$64 \cdot 5$	64.7	$64 \cdot 7$	65.1		65.2
20	63.6	64.5	65.0	65.0	65.3		$65 \cdot 7$	47	6 t .0	63.0	65.0	65.6	66.0		66.0
21	63.2	65.6	$65 \cdot 7$	$65 \cdot 7$		66.0		48	62.2	65.2	67.0	67.4	$67 \cdot 7$		68.0
22	63.2	65.4	66.2	66.2		66.6		49	64.1	65.2	66.1	67.2	$67 \cdot 3$		67.5
23	$64 \cdot 3$	65.6	66.6	67.1	$67 \cdot 3$			50	63.0	$64 \cdot 4$	68.0	69.0	$69 \cdot 3$		69.4
24	$6{ }_{1.2}$	63.0	66.6	68.0	69.0	69.6	$70 \cdot 4$	51	63.1	66.2	67.0	68.0	68.3	68.2	68.6
25	64.0	65.5	67.0	67.1		67.1		52	62.4	65.3	66.6	68.5	69.2		69.6
26	63.2	64.2	64.7		64.6	$6+7$	65.1 68.6								
27	63.4		$67 \cdot 7$	68.1	68.1		68.6	Av'	$\begin{array}{r} 63 \cdot 3 \\ =0.13 \\ \hline \end{array}$	$\begin{aligned} & 65.0 \\ & 0.61 \end{aligned}$	66.3 0.90	$\begin{aligned} & 67.0 \\ & 1.06 \end{aligned}$	$\begin{aligned} & 67.3 \\ & 1.07 \\ & \hline \end{aligned}$		67.5 1.07

Table XVII.
Averages and Probable Deviations calculated from certain limited measurements and from different years.
a. Small Group.

Inches.	16 years.	17 years.	18 years.	19 years.	20 years.	22 years.
63.5-64.7'1 at	64.0 ± 0.2	65.6 ± 0.6	66.7 ± 0.8	67.2 ± 1.0	67.3 ± 1.1	67.4 ± 1.0
65.0-66.5", at		65.6 ± 0.4	67. 圭 0.6	67.4 ± 0.8	67.6 士 0.7	67.6 ± 0.6
$66.0-67.5^{\prime \prime}$, at			67.0 ± 0.4	67.4 ± 0.4	67.6 ± 0.5	68.0 ± 0.5
$67.0-68.5 \text { at }$				67.5 ± 0.35	68.0 ± 0.45	68.1 $\ddagger 0.45$
$68.0-69.5^{\prime \prime} \text { at }$					68.5 ± 0.3	68.7 ± 0.40 6.3 ± 0.42

b. Tall Group.						
67.0-69.'	at\|68.0 ${ }^{\text {a }} 0.49$	68.7 ± 0.62	69.2 ± 0.68	60.5 ± 0.76	69.8 ± 0.79	70.0 ± 0.75
$67.5-69.5$	at	68.4 ± 0.56	69.2 ± 0.64	69.4 ± 0.74	69.6 ± 0.67	69.7 ± 0.62
68. - 70.	at		69.3 ± 0.49	69.2 ± 0.56	69.4 ± 0.55	69.7 ± 0.54
68.5-70.5	at			69.4 ± 0.40	69.6 ± 0.42	69.7 ± 0.44
$69.0-71.0$	at				69.7 ± 0.40	69.8 ± 0.42
69.5-71.0	at					$70.0+0.26$

Table XVIII.
Individual Increases in Height.

Inches.	16-17	17-18	Years.	19-20	20-22	16-17	17-18	Years. $\|18-19\|$	19-20	20-22
. 6		x.								
- 5										
- 4		1.								
- 3										
. 2										
. 1	1.									
3	1.	1.								
. 7	3.	I.								
. 6	2.	1.								
. 5	1.									
- 4	2.									
- 3	I.	1.	x.							
. 2	4.									
. 1	2.									
2	2.	1.								
- 7	1.	3.	2.							
. 6	3.	2.								
. 5	2.	2.		1.		2.				
-4	2.	1.			1.	3.				
- 3	5.	4.	2.			3.				
. 2	2.	4.	1.		1.	4.	x.			
. 1	3.	2.	1.			3.	2.			
1	3.	6.	3.	1.		7.	2.	1.	1.	
$\cdot 7$. 3.	4.	3.	1.		4.	2.	1.		
. 6	1.	3.	5.		1.	4.	8.	2.	1.	
. 5	2.	1.	5.	2.	1.	11.	5.	2.	2.	2.
. 4	1.	4.	8.	3.	6.	6.	10.	5.	1.	2.
- 3		1.	8.	15.	4.		7.	10.	10.	4.
+ 2		2.	3.	8.	3.		10.		10.	9.
+.1		1.	4.	7.	13.	4.	4.	6.	16.	8.
- 0.1	1.	1.	5.	6.	8.	2.	9.	21.	13.	19.
- . 1			1.	1.	3.				2.	8. 2.
Total No	48.	48.	52.	45.	42.	57.	60.	6 I.	57.	54.

Table XIX. The Height.

Age at nearest Birthday.	No. of observations.	Values in Inches at the following Percentile Grades.										
		5	10	20	30	40	50	60	70	80	90	95
15	131	59.507	60.310	$6 \mathrm{t} \cdot 5^{63}$	62.553	63.457	64.290	64.855	65.764	66.653	67.717	69.290
16	395	61.750	62.549	63.714	64.580	65.250	65.805	66.455	67.200	68.020	69.000	70.406
17	722	63.130	64.217	65.365	65.853	66.434	67.000	67.626	$68.3{ }^{17}$	69.100	70.320	71.320
18	841	64.193	65.000	65.886	66.483	67.044	67.6;3	68.251	68.920	69.665	70.520	71.530
19	750	64.680	$65 \cdot 391$	66.250	66.844	67.424	67.651	68.600	69.243	69.786	71.000	71.880
20	645	64962	$65 \cdot 543$	66.43	67.094	67.675	68.252	68.810	69.477	70.253	75.280	72.120
21	493	64.970	65.620	66.433	67.054	67.667	68.215	63.852	69.483	70.180	71.120	72.000
22	328	64.945	65.83 x	66.580	67.200	67.762	68.352	68.960	69.927	70.632	71.543	72.258
23	232	65.287	65.800	66.580	67.300	68.010	68.522	69.030	69.625	170.307	71.240	72.000

Table XX. The Weight.

Age at nearest	No. of	Values in Pounds at the following Percentile Grades,										
Birthday.	observations.	5	10	20	30	40	50	60	70	80	90	95
15	131	80.0	$85 \cdot 3$	93.0	98.8	103.8	108.5	112.6	116.5	120.5	127.3	132.0
16	395	94.0	98.6	103.6	108.9	114.2	116.9	121.4	125.4	130.5	137.1	146.2
17	722	102.4	106.5	112.0	116.9	121.0	124.8	128.5	132.5	137.5	144.3	151.6
18	841	109.2	113.3	120.0	123.9	127.9	${ }_{1} 131.8$	135.9	140.0	146.0	153.6	158.0
19	750	114.3	120.0	124.8	129.5	$133 \cdot 3$	137.0	142.I	$145 \cdot 3$	149.7	158.0	165.1
20	645	116.0	125.2	126.5	131.2	134.9	138.5	142.5	146.9	152.3	160.9	167.8
21	493	117.7	122.0	127.0	131.6	135.3	138.9	143.0	147.2	152.6	160.7	167.3
22	328	117.2	122.1	128.0	132.1	135.3	138.7	142.9	147.8	153.5	160.0	163.1
23	232	118.0	122.2	126.7	131.0	134.7	138.3	142.2	146.4	151.8	163.8	170.0

Table XXI. The Height, Sitting,

Age at nearest Birthday.	No. of observations.	Values in Inches in the following Percentile Grades.										
		5	10	20	30	40	50	60	70	80	90	95
15												
16	110	31.050	31.600	32.270	32.692	33.110	33.500	33.893	34.285	34.680	35.150	35.577
17	225	32.008	32.400	33.083	33.460	33.833	$34 \cdot 180$	$34 \cdot 500$	34.821	35.240	35.800	36.135
18	243	32.915	33.174	33.548	33.921	34.278	34.630	3.5 .000	35.044	35.677	36.074	36.602
19	200	33.050	33.333	33.889	$34 \cdot 307$	$34 \cdot 700$	35.055	35.333	35.611	35.888	36.462	$3^{36.850}$
20	165	35.185	$33 \cdot 543$	34.150	$34 \cdot 562$	34.975	35.254	35.528	35.800	36.137	36.707	37.000
21	103	33.643	34. 100	$34 \cdot 549$	34.995	35.222	$35 \cdot 445$	35.670	35.893	36.235	36.683	36.907
22	68	33.266	33.644	34.225	34.675	35.050	$35 \cdot 320$	$35 \cdot 592$	$35.86+3$	36.309	36.927	37.433
23	46	34.018	34.288	34.450	$34 \cdot 737$	35.026	$35 \cdot 333$	35.640	35.946	36.300	36.646	36.823

Table XXII. The Perineal Height.

Age at nearest Birthday.	No. of observations.	Values in Inches in the following Percentile Grades.										
		5	10	20	30	40	50	60	70	80	90	95
15	90	29.545	31.000	31.644	32.120	32.650	33.125	33.500	33.875	34.461	35.222	35.722
16	235	31.150	31.520	$32 \cdot 368$	32.987	$33 \cdot 411$	33.830	$34 \cdot 245$	$34 \cdot 657$	35.118	35.808	36.477
17	409	32.084	32.583	33.287	33.780	$34 \cdot 213$	34.600	35.000	$35 \cdot 401$	36.121	36.537	37.030
18	49°	32.500	33.135	33.800	34.260	34.634	35.007	$35 \cdot 357$	$35 \cdot 707$	36.110	36.78 I	37.314
19	454	33.033	$33 \cdot 480$	34.150	34.525	34.800	$35 \cdot 243$	35.560	35.874	$36 \cdot 331$	36.885	37.554
20	395	33.209	33.679	34.245	34.618	35.000	$35 \cdot 310$	35.629	36.07 T	36.440	36.970	37.720
21	318	32.926	33.450	34.180	34.600	35.012	$25 \cdot 340$	35.670	36.000	36.483	36.972	37.6;0
23	212	33.270	$33 \cdot 77$ t	$34 \cdot 348$	34.800	35.176	35.492	35.810	36.221	36.779	$37 \cdot 500$	37.900
23	160	33.500	34.090	33.576	35.040	$35 \cdot 350$	35.654	35.961	36.535	36.700	37.177	37.650

Table XXIII.

The Circumference of the Chest midway between Inspiration and Expiration.

Age at nearest Birthday.	No. of observations.	Values in Inches in the following Percentile Grades.										
		5	10	20	30	40	50	60	70	80	90	95
15	13^{2}	26.600	27.262	28.070	28.700	29.300	29.952	30.470	31.063	31.664	32.483	33.000
16	395	27.980	28.464	29.333	30.071	30.584	31.101	31.635	32.000	32.712	33-513	34.150
17	722	28.740	29.170	30.480	31.061	$3 \mathrm{~L} \cdot 47^{8}$	3 L .895	32.324	32.751	$33 \cdot 347$	34.221	34.843
18	841	30.028	30.588	31.322	31.832	32.275	32.685	33.135	33.715	$34 \cdot 354$	$35 \cdot 100$	35.813
19	750	30.814	31.300	32.011	32.428	32.844	33.250	33.710	$34 \cdot 184$	34.735	35.48 I	35.944
20	645	31.078	31.500	32.153	32.700	33.165	33. 588	34.000	34.489	34.960	35.804	36.576
21	496	31.152	31.580	32.280	$32 \cdot 720$	33.270	33.656	34.055	$34 \cdot 546$	35.060	35.834	36.680
22	328	3 x .23 I	31.744	32.384	32.900	$33 \cdot 345$	33.776	34.208	34.640	35.142	36.000	36.873
23	232	31.255	31.900	32.474	33.029	33.451	33.873	34.265	34.646	35.055	35.855	36.822

Table XXIV.
The Lung-capacity ascertained by means of the Spirometer.

Age at nearest Birthday.	No. of observations.	Values in Cubic Inches in the following Percentile Grades.										
		5	10	20	30	40	¢0	60	70	80	90	95
15	132	117.2	132.0	148.4	156.4	166.2	178.2	190.0	198.9	$205 \cdot 5$	219.5	23.3 -5
16	395	143.2	152.1	166.8	176.3	185.9	193.5	199.4	210.7	224.0	237.0	$253 \cdot 5$
17	722	156.4	171.0	181.9	192.7	198.8	208.8	216.8	228.5	238.8	252.7	263.1
18	841	170.0	180.0	192.3	203.5	212.5	219.0	227.7	236.0	$245 \cdot 7$	260.0	272.2
19	750	181.0	$192 \cdot 3$	$203 \cdot 3$	213.2	220.8	228.3	235.6	243.4	253.1	268.6	287.0
20	645	185.6	194.3	206.9	215.8	224.0	233.2	242.0	249.6	261.0	277.6	290.7
21	493	185.7	194.6	207.0	219.5	224.1	232.2	240.0	248.3	259.0	$277 \cdot 4$	287.5
22	328	194.0	$203 \cdot 4$	214.5	222.5	231.1	237.9	245.8	254.6	263.8	286.5	298.5
23	232	194.7	204.0	211.5	221.0	230.0	236.3	$245 \cdot 3$	255.1	264.6	276.2	$285 \cdot 5$

Table XXV.
The Span, in Inches, of the Arms.

Age at nearest Birthday.	No. of observations.	Values in the following Percentile Grades.										
		5	10	20	30	40	50	60	70	80	90	95
15	33	60.65	61.65	62.52	63.25	64.05	64.50	64.97	65.55	$67 \cdot 4^{8}$	68.35	68.78
16	110	60.90	63.00	64.54	65.42	66.25	66.80	$67 \cdot 44$	68.15	69.00	70.25	71.83
17	225	63.61	64.61	65.74	66.57	67.27	67.93	68.54	69.27	70.24	71.54	72.57
18	243	$64 \cdot 47$	65.23	66.16	67.14	67.91	68.55	69.23	69.81	70.80	72.12	73.00
19	200	$64 \cdot 45$	65.66	66.90	67.60	68.34	69.03	69.64	70.40	71.35	72.50	73.55
20	165	64.88	66.13	67.15	67.97	68.70	69.40	70.12	71.07	71.82	$73 \cdot 34$	73.80
21	103	65.30	67.03	68.12	68.91	69.44	69.93	70.63	71.32	71.96	$73 \cdot 34$	74.62
22	68	65.10	66.00	67.20	68.05	68.90	69.60	70.35	71.23	72.28	73.80	74.43
23	46	67.05	67.43	68.60	69.27	69.60	69.93	70.601	71.27	71.85	72.85	73.85

TAble XXVI.
The Circumference, in Inches, of the Waist.

Age at nearest	No. of	Values in the following Percentile Grades.										
Birthday.	observations.	5	10	20	30	40	50	60	70	80	90	95
15	134	21.67	22.67	23.50	24.09	24.62	25.12	25.53	25.93	26.53	27.60	28.61
16	395	23.23	23.75	24.47	25.06	25.41	25.77	26.18	26.71	27.31	27.97	28.80
17	722	23.84	24.38	25.13	25.57	26.00	26.45	26.90	27.42	27.96	28.78	29.48
18	841	24.21	24.86	25.69	26.28	26.75	27.22	27.70	28.21	28.59	29.68	30.43
19	75°	24.33	25.20	26.03	26.60	27.15	27.60	28.05	28.53	29.02	29.82	30.65
20	645	24.68	$25 \cdot 32$	26.19	26.83	$27 \cdot 32$	27.98	28.26	28.53	29.58	30.66	31.40
21	493	24.58	25.23	26.07	26.66	27.21	27.69	28.21	28.85	29.62	30.54	31.19
22	328	25.09	25.53	26.24	26.76	27.28	27.81	28.35	28.91	29.46	30.25	31.00
23	232	24.87	$25 \cdot 53$	26.40	27.03	$27 \cdot 46$	27.89	28.48	29.13	29.84	30.85	31.70

Table XXVII.
Right Hand Squeeze in Pounds.

Age at nearest Birthday.	No. of observations.	Values at the following Percentile Grades.										
		5	10	20	30	40	50	60	70	80	90	95
15	46	38.0	40.6	$46 \cdot 3$	53.0	58.6	60.0	64.0	68.0	70.3	79.0	80.0
16	120	51.0	55.5	59.0	62.1	65.2	68.0	70.7	73.5	76.8	81.2	go.o
17	225	57.1	60.7	66.1	70.0	72.5	75.2	78.0	81.0	84.2	89.4	94.0
18	243	¢2.8	65.7	68.0	70.4	74.5	77.2	80.1	83.1	86.6	91.7	96.8
19	200	65.6	68.8	72.6	75.9	78.8	82.0	85.2	88.1	91.6	97.6	102.5
20	165	66.2	69.7	74.7	77.8	80.3	83.8	86.8	89.8	95.2	99.0	103.0
21	103	67.1	71.0	75.6	79.6	82.7	85.8	89.5	92.7	96.7	102.1	107.0
22	68	66.0	68.4	72.5	77.0	8 r .6	85.0	87.1	89.2	94.4	98.9	105.0
23	46	68.9	72.0	78.6	83.8	86.7	89.0	92.1	$95 \cdot 5$	97.6	99.7	107.1

Table XXVIII.
Left Hand Squeeze in Pounds.

Age at nearest	No. of	Values in the following Percentile Grades.										
Birthday.	observations.	5	10	20	30	40	50	60	70	80	90	95
15	36	33.0	36.0	43.0	49.6	54.2	56.4	58.0	59.6	64.6	71.0	$75 \cdot 5$
16	110	45.0	50.9	55.6	59.0	62.1	65.0	66.7	68.6	72.0	80.0	85.0
17	225	55.0	58.9	64.7	68.6	71.6	73.5	76.1	79.4	82.7	87.5	92.7
18	245	57.5	61.6	66.5	69.0	71.6	75.0	77.6	80.0	84.5	89.2	94.8
19	200	64.4	66.8	70.8	74.4	78.3	81.5	83.1	86.1	89.5	96.3	99.6
20	165	63.3	66.8	71.9	76.0	79.3	82.0	84.6	90.0	94.0	99.4	104.2
21	103	67.7	71.5	75.7	78.8	81.7	84.5	87.3	90.0	93.7	99.7	104.8
22	68	65.2	67.1	72.0	77.0	80.0	83.8	86.8	89.4	94.5	99.4	103.2
23	46	66.5	69.0	77.2	80.4	82.7	85.0	87.3	89.6	92.3	97.2	104.2

Table XX1X.
The Absolute Annual Increase in Weight in Pounds.

Age at nearest Birthday.	Values in the following Percentile Grades.											
	5	I0	20	30	40	50	60	70	80	90	95	Average.
15-16	14.0	13.3	10.6	10.1	11.4	8.4	8.8	8.9	10.0	9.8	14.2	11.0
16-17	8.4	$7 \cdot 9$	8.4	8.0	6.8	$7 \cdot 9$	7.1	$7 \cdot 1$	7.0	7.2	$5 \cdot 4$	7.0
17-18	6.8	6.8	8.0	7.0	6.9	7.0	$7 \cdot 4$	$7 \cdot 5$	8.5	$9 \cdot 3$	6.4	8.4
18-19	$5 \cdot 1$	6.7	4.8	5.6	$5 \cdot 4$	$5 \cdot 3$	6.2	$5 \cdot 3$	$3 \cdot 7$	$5 \cdot 4$	7.1	6.32
19-20	1.7	$5 \cdot 2$	1.7	1.7	1.6	1.5	0.4	1.6	2.6	2.9	2.7	1. 5
20-21	1.7	3.2	0.5	0.4	0.4	0.4	0.5	0.3	0.3	-0.2	-0.5	-1.2
21-22	-0.5	0.1	1.0	0.5	0.0	-0.2	-0.1	0.6	0.9	-0.7	-4.2	-1.3
22-23	2.8	0.1	1.3	. 1	-0.6	-0.4	-0.7	-1.4	-1.7	3.8	6.9	2.7

Table XXX.
The Absolute Annual Increase in Height, Standing.

Ageat nearest	Values in 1nches in the following Percentile Grades.											
Birthday.	5	10	20	30	40	50	60	70	80	90	95	Average.
15-16	2.243	2.239	1.151	2.027	1.793	1.515	1.570	1.536	1.367	1.283	1.177	2.13
16-17	1.380	1.668	1.451	1.273	1.184	1.195	1.172	1.117	1.080	1.320	0.914	1.12
17-18	1.063	1.283	0.721	0.630	0.610	0.633	0.624	0.633	0.565	0.200	0.210	0.24
18-19	0.487	0.39 r	0.364	-. 36 r	0.380	0.018	0.349	0.323	0.121	0.480	-. 350	0.61
19-20	0.282	-. 152	0.163	0.250	0.251	0.601	0.210	0.234	0.467	0.280	0.240	0.65
20-21	0.008	0.077	0.020	-0.040	-0.008	-0.037	0.042	0.006	-0.073	$\longrightarrow .160$	-0.120	0.05
21-22	-0.025	0.211	0.147	0.146	0.095	0.137	-. 108	0.444	0.452	0.423	0.258	-0.15
22-23	0.342	-0.031	0.000	0.100	0.248	0.170	0.070	-0.302	-0.325	-0.303	-0.258	0.17

Table XXXI.
The Absolute Annual 1ncrease in Height, Sitting.

Age at nearest	Values in 1nches in the following Percentile Grades.											
Birthday.	5	10	20	30	40	50	60	70	80	90	95	Average.
16-17	0.958	0.800	0.813	0.768	0.723	0.630	0.607	0.536	0.560	0.650	0.558	-. 50
17-18	0.907	0.774	0.465	0.46I	0.445	0.450	0.500	0.223	0.437	0.274	0.467	0.75
18-19	-. 135	-.159	0.34 I	-. 386	0.422	0.425	0.333	-0.567	0.211	-. 388	0.248	0.75
19-20	0.135	0.210	0.26 I	0.255	0.275	-. 199	0.195	-0.189	0.249	0.245	0.150	0.73
20-21	0.458	0.557	0.399	0.433	0.247	0.191	0.142	0.093	0.098	-0.024	-0.093	-0.23
21-22	-3.77	-0.456	-0.324	0.320	-0.172	-0.125	-0.078	-0.029	0.074	-0.244	0.526	0.00
22-23	0.752	0.644	0.225	0.062	-0.024	0.013	0.048	0.082	-0.009	-0.281	- 390	0.00

Table XXX11.
The Absolute Annual Increase in Perineal Height.

Age at nearest	Values in Inches in the following Percentile Grades.											
Birthday.	5	10	20	30	40	50	60	70	80	90	95	Average.
15-16	1.605	0.220	0.724	0.867	0.76 r	0.705	0.745	0.782	0.657	0.586	0.755	1.20
16-17	0.934	1.363	0.919	0.793	0.802	0.770	0.745	-0. 744	1.003	0.729	0.553	0.80
17-18	0.416	0.552	$0.5^{1} 3$	0.480	0.42 r	0.407 ,	0.357	0.306	0.091	0.244	c. 284	0.60
18-19	0.533	0.345	0.350	0. 265	0.166	0.236	0.203	-. r_{67}	0.221	0.10 .4	0.240	$\mathbf{1 . 3 0}$
19-20	0.166	-. 199	0.095	0.093	0.200	0.067	0.069	0.197	0.109	0.085	0.166	-0.90
20-21	-0.273	-0.229	-0.065	-0.018	0.012	0.030	0.041	-0.071	0.043	0.002	-0.050	-1.00
21-22	0.344	0. 32 I	0.168	0.200	0.164	0.152	0.140	0.221	0.296	0.528	0.230	1.00
22-23	0.220	0.319	0.228	0.240	0.174	0.162	0.151	0.314	-0.079	-0.323	-. 025	0.00

Table XXXIII.
The Absolite Annual Increase in Circumference of Chest.

Age at nearest	Values in lnches in the following Percentile Grades.											
Birthday.	5	10	20	30	40	50	60	70	80	90	95	Average.
15-16	1.383	1.202	1.263	1.371	1.284	1.149	1. 165	0.937	$1.04{ }^{8}$	1.030	1.150	1.17
16-17	0.757	0.706	1.147	0.990	0.894	0.794	0.689	0.751	0.635	0.708	0.693	0.83
17-18	1.288	1.418	0.942	0.771	0.797	0.790	0.811	0.964	1.007	0.879	0.970	0.94
18-19	0.786	0.712	0.689	0.596	0.569	-0.565	0.575	0.469	-0.381	0.381	-.131	1.54
19-20	0.264	0.200	0.142	0.272	0.32 I	0.338	0.290	0.305	0.235	0.323	0.532	-0.70
20-21	0.074	0.080	0.127	0.020	0.105	0.068	0.055	0.057	- 200	0.030	0.104	0.00
21-22	0.079	0.164	-. 104	0.180	0.075	0.120	-. 153	0. 106	0.082	0.166	-. 193	0.05
20-23	0.024	-. 156	0.090	0.129	0.066	0.097	0.057	0.006	0.087	0.145	-0.051	0.45

Table XXX1V.
The A bsolute Annual lncrease in Lung-capacity. (Spirometer.)
Age at nearest

Birthday.	5	10	20	30	40	50	60	70	80	90	95	Average
15-16	26.0	20.1	18.4	19.9	19.7	15.3	$9 \cdot 4$	11.8	18.5	17.5	20.0	18.0
16-17	13.2	18.9	15.1	16.4	12.9	15.3	17.4	87.8	14.8	15.7	9.6	16.0
17-18	14.4	9.0	10.4	10.8	13.7	10.2	10.9	8.5	6.9	$7 \cdot 3$	9.1	9.0
18-19	11.0	12.3	1 I .0	9.7	8.3	$9 \cdot 3$	$7 \cdot 9$	$7 \cdot 4$	$7 \cdot 4$	8.6	14.8	14.0
19-20	4.6	2.0	3.6	2.6	3.2	$5 \cdot 9$	6.4	6.2	7.9	9.0	3.7	- 1.0
20-21	0.1	0.3	0.1	3.7	0.1	0.0	-2.0	-r.3	-2.0	1.02	-3.2	2.0
21-24	8.3	8.8	$7 \cdot 5$	2.0	7.0	$5 \cdot 7$	5.8	6.3	4.8	19. 1	11.0	5.0
23-23	0.7	0.6	3.0	-1.5	1.1	-1. 6	-0.5	0.5	0.8	10.3	- 13.0	-4.0

Table XXXV.
The Absolute Aunual Increase in Circumference of Waist.

at nearest	Values in Inches in the following Percentile Grades.											
Birthday.	5	10	20	30	40	50	60	70	80	90	95	A verage.
15-16	1.56	1.08	0.97	0.97	0.79	0.65	0.65	0.78	0.78	0.37	0.19	0.91
16-17	0.61	0.63	0.66	0.51	0.59	0.68	0.72	0.71	0.65	0.81	0.68	1.36
17-18	0.37	0.48	0.56	0.71	0.75	0.77	0.80	0.79	0.63	0.90	0.95	0.54
18-19	0.12	0.34	0.34	0.32	0.40	0.38	0.35	0.32	0.43	0.14	0.22	0.30
19-20	0.35	0.12	0.16	0.23	0.17	0. 38	0.21	0.30	0.56	0.84	0.75	0.02
20-21	-0.10	-0.09	-0.12	-0.17	$\bigcirc .11$	-0.29	-0.05	0.02	0.04	-0.12	-0.21	0.06
21-22	0.51	0.30	0.17	0.10	0.07	0.12	0.14	0.06	-0.16	-0.29	-0.19	0.12
22-23	-0.22	0.00	0.16	0.27	0.18	0.08	0.13	0.22	0.38	0.50	0.70	0.40

Table XXXVI.
The Absolute Annual Increase in the Span of Arms.

t nearest	Values in 1nches in the following Percentile Grades.											
Birthday.	5	10	20	30	40	50	60	70	80	90	95	Average.
15-16	0.25	1. 35	2.02	2.17	2.20	$2 \cdot 30$	2.47	2.60	1.52	1.90	3.05	3.43
16-17	2.71	t. 61	1.20	1.15	1.02	1.10	1.10	1.12	1.24	1.29	0.74	0.77
17-18	0.86	0.62	0.42	0.67	0.64	0.65	0.69	0.54	0.56	0.58	0.46	1.25
18-19	-0.02	0.43	0.74	0.46	0.43	0.48	0.41	0.59	0.55	0.32	0.55	0.80
19-20	0.43	0.47	0.25	0.37	0.36	0.37	0.48	0.67	0.47	0.84	0.25	-0.02
20-21	0.42	0.90	0.97	0.94	0.74	0.53	0.51	0.25	0.14	0.00	0.82	0.57
21-22	-1.20	-1.03	-0.92	-0.86	-0.54	-0.33	-0.28	-0.03	0.32	0.44	-0.19	-0.47
22-23	2.95	1.43	1.40	1.22	0.70	0.33	0.25	-0.06	-0.43	-0.95	-0.58	-0.80

Table XXXVI1.

The Absolute Annual 1ncrease in Right Hand Squeeze.

e at nearest	Values in Pounds in the following Percentile Grades.											
Birthday.	5	10	20	30	40	50	60	70	80	90	95	Average.
15-16	13.0	14.9	12.7	9.1	6.6	8.0	6.7	$5 \cdot 5$	6.5	$3 \cdot 1$	10.0	10.50
16-17	6.1	5.2	7.1	$7 \cdot 9$	$7 \cdot 3$	$7 \cdot 2$	$7 \cdot 3$	$7 \cdot 5$	$7 \cdot 4$	$7 \cdot 3$	4.0	$5 \cdot 97$
17-18	$5 \cdot 7$	5.0	1.9	0.4	2.0	$2 \cdot 3$	2.1	2.1	2.4	$2 \cdot 3$	2.8	$3 \cdot 53$
18-19	2.8	3.1	4.6	$5 \cdot 5$	$4 \cdot 3$	$4 \cdot 5$	5.1	5.0	5.0	$5 \cdot 9$	$5 \cdot 7$	400
19-20	0.6	0.9	2.1	1.9	1.5	1.8	I. 6	1.7	3.6	1.4	1.2	2.00
20-21	0.9	1.3	0.9	1.8	2.4	2.0	2.7	2.9	1.5	3.1	$3 \cdot 3$	1.00
21-22	-I. ${ }^{\text {r }}$	2.6	-3.1	-2.6	-I.I	-0.8	-2.4	-3.5	-2.3	-3.2	-2.0	-1.50
22-23	2.9	3.6	6.1	6.8	5.1	4.0	5.0	6.3	3.2	0.8	2.1	0.10

Table XXXV1II.
The Absolute Annual Increase in Left Hand Squeeze.

;e at nearest	Values in Pounds in the following Percentile Grades.											
Birthday.	5	10	20	30	40	50	60	70	80	90	95	Average
15-16	12.0	14.9	12.6	$9 \cdot 4$	7.9	8.6	8.7	9.0	$7 \cdot 4$	9.0	$9 \cdot 5$	10.0
16-17	10.0	8.0	9.1	9.6	9.5	8.5	9.4	10.8	10.7	$7 \cdot 5$	$7 \cdot 7$	6.6
17-18	2.1	2.7	1.8	0.4	0.0	1.5	1.5	0.6	1.8	1.7	2.1	$3 \cdot 4$
18-19	$7 \cdot 3$	5.2	$4 \cdot 3$	$5 \cdot 4$	6.7	6.5	5.5	6.1	5.0	7.1	4.8	3.0
19-20	-I. 1	0.0	1.1	1.6	1.0	0.5	I. 5	3.9	$4 \cdot 5$	3.1	4.6	2.0
20-21	$4 \cdot 3$	$4 \cdot 7$	3.8	2.8	2.4	2.5	2.7	0.0	-0.3	0.3	0.6	2.4
21-22	-2.5	-4.4	-3.7	-1.8	-1.7	-0.7	-0.5	-0.6	0.8	-0.3	-r.6	-1.6
22-23	1.3	1.9	5.2	$3 \cdot 4$	2.7	1.2	0.5	0.2	-2.2	-2.2	1.0	-r.I

Table XXXIX.
The Relative Annual 1ncrease in Weight. (Pounds.)

jeat nearest	Values in Per Cent. in the following Percentile Grades.											
Birthday.	5	10	20	30	40	50	60	70	80	90	95	Average.
15-16	13.1	12.4	10.0	$9 \cdot 4$	10.6	8.0	8.2	8.3	$9 \cdot 3$	$9 \cdot 2$	13.2	10.3
16-17	$7 \cdot 1$	6.7	7.1	6.8	5.8	6.7	6.0	6.0	6.0	6.0	4.6	6.0
17-18	$5 \cdot 4$	$5 \cdot 4$	6.4	5.6	$5 \cdot 5$	$5 \cdot 6$	6.0	6.0	6.8	$7 \cdot 4$	5.1	6.7
18-19	3.8		$3 \cdot 7$	$4 \cdot 2$	4.0	4.0	$4 \cdot 7$	4.0	2.3	.	$5 \cdot 3$	5.0
19-20	1.2	$3 \cdot 7$	1.2	1.2	1.1	1.1	0.3	1.1	1.8	2.1	2.0	1.1
20-21	1.2	2.3	0.3	0.3	0.3	0.3	0.3	0.2	0.2	-0.1	-0.3	-0.8
21-22	-0.4	0.1	0.7	0.4	0.0	-0.4	-0.1	0.4	0.6	-0.5	-3.0	-1.0
22-23	2.0	0.1	-0.9	-0.8	-0.4	-0.3	-0.5	-1.0	-1.2	2.7	4.9	2.0

Table XL.
The Relative Annual 1ncrease in Height, Standing. (1nches.)

ge at nearest

 Birthday.| 5 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 95 | Average. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3.51 | 3.51 | 1.80 | 3.17 | 2.72 | 2.37 | 2.41 | 2.41 | 2.14 | 2.01 | 1.84 | 3.34 |
| 2.09 | 2.53 | 2.20 | т.93 | ז. 79 | 1.8ı | 1.73 | 1.71 | т. 64 | 2.02 | $\pm .08$ | 1.70 |
| 1.58 | 1.9: | 1.07 | -. 93 | 0.91 | 0.93 | - 93 | 0.90 | - 83 | -. 30 | 0.31 | -. 36 |
| 0.72 | 0. 5^{8} | 0.54 | 0.53 | 0.56 | 0.03 | 0. 52 | 0.47 | 0.17 | 0.72 | 0.52 | 0.91 |
| 0.41 | 0.22 | $0.2+$ | 0.37 | 0.37 | 0.88 | 0.30 | 0.34 | 0.68 | 0.41 | - 35 | 0.95 |
| 0.001 | 0.01 | 0.003 | -0.058 | -0.012 | -0.058 | 0.061 | 0.008 | -0.107 | -0.232 | -0. 175 | 0.073 |
| -0.036 | 0.307 | 0.214 | 0.215 | 0.138 | 0.200 | 0.157 | 0.647 | 0.647 | 0.616 | -. 367 | -0.215 |
| 0.500 | -0.045 | 0.000 | 0.146 | 0.362 | 0.218 | 0.102 | -0.44 | 0.474 | -0.442 | -0.377 | 0.248 |

Table XLI.
The Relative Annual Increase in Height, Sitting. (1nches.)

Age at nearest	Values in Per Cent, at the following Percentile Grades.											
Birthday.	5	10	20	30	40	50	60	70	80	90	95	Average
16-17	2.87	2.40	2.44	2.30	2.17	2.04	1.82	1.61	1.68	1.95	1.95	1.50
17-18	2.60	2.21	1.30	1.30	1.27	1.21	1.43	0.64	1.25	0.78	1.30	2.14
18-19	0.38	0.44	0.95	1.08	1.18	1.18	0.93	1.58	0.59	1.08	0.69	2.10
19-20	0.37	0.60	0.71	0.70	0.75	0.52	0.52	0.50	0.68	0.68	0.41	2.00
20-21	1.23	1. 55	1. 11	1.21	0.69	0.53	0.39	0.27	0.29	-0.08	-0.27	-0.62
21-22	-1.05	-1.26	-0.90	-0.90	-0.48	-0.35	-0.21	-0.08	0.20	0.68	1.46	0.00
22-23	2.10	,	0.62	0.17	-0.07	0.03	0.13	0.23	-0.02	-0.77	1.08	0.00

Table XLI1.
The Relative Annual lncrease in Perineal Height. (lnches.)

Age at nearest	Values in Per Cent. at the following Percentile Grades.											
Birthday.	5	10	20	30	40	50	60	70	80	90	95	Average
15-16	5.00	0.70	2.26	2.71	2.30	2.20	2.33	2.44	2.05	1.83	2.36	3.80
16-17	2.81	4.10	2.16	2.38	2.41	2.32	2.24	2.24	3.02	2.20	1.70	2.41
17-18	1.22	1.62	1.51	1.41	1.24	1.20	1.05	0.90	0.30	0.72	0.84	1.77
18-19	1.54	1.00	1.01	0.74	0.48	0.69	0.58	0.47	0.64	0.30	0.70	3.76
19-20	0.46	0.55	0.26	0.26	0.58	0.19	0.19	0.55	0.30	0.24	0.46	-2.50
20-21	-0.40	-0.33	-0.09	-0.027	0.020	0.04	0.103	-0.10	0.06	0.003	-0.07	-1.459
21-22	0.96	0.89	0.47	0.57	0.47	0.42	-. 39	0.61	0.82	1.46	0.64	2.77
22-23	0.61	0.88	0.64	0.66	0.50	0.45	0.42	0.90	-0.22	0.90	-0.89	0.00

Table XLIll.
The Relative Annual 1ncrease in Circumference of Chest. (lnches.)

Age at nearest Birthday.	Values in Per Cent. at the following Percentile Grades.											
	5	10	20	30	40	50	60	70	80	90	95	Average
15-16	4.54	3.93	4.14	4.50	4.21	3.77	3.82	3.62	3.40	$3 \cdot 37$	3.77	3.83
16-17	2.39	2.23	3.62	3.12	2.82	2.50	2.17	2.38	2.01	2.23	2.19	2.62
17-18	3.96	4.36	2.90	2.37	2.45	2.44	2.50	2.97	3.09	2.70	2.97	2.90
18-19	2.34	2.13	2.06	1.78	1.70	8.70	1.72	1.41	1.14	1.14	0.40	4.60
19-20	0.75	0.57	0.40	0.80	0.91	0.96	0.85	0.90	0.67	0.92	1.52	-2.00
20-21	0.21	0.23	0.37	0.06	0.30	0.20	0.16	0. 16	0.30	0.09	0.30	0.00
21-22	0.23	0.47	0.30	0.52	0.21	0.36	0.44	0.30	0.23	0.47	0.56	0.02
22-23	0.07	0.45	0.26	0.36	0.19	0.28	0.16	0.01	-0.25	0.42	-0.15	1.40

Table XLIV.
The Relative Annual Increase in Lung Capacity. (Cb. Inches.)

Age at nearest Birthday.	Values in Per Cent. at the following Percentile Grades.											
	5	10	20	30	40	50	60	70	80	90	95	Average
15-16	14.2	10.1	11.0	11.0	11.0	8.3	5.1	6.4	10.1	9.5	11.0	10.0
16-17	6.5	7.5	9.4	8.1	6.4	7.6	8.6	8.9	$7 \cdot 3$	7.8	4.7	8.0
17-18	6.6	4.8	4.1	5.0	6.3	$4 \cdot 7$	5.0	4.0	$3 \cdot 2$	$3 \cdot 3$	4.2	4.1
18-19	4.8	4.8	$5 \cdot 4$	$4 \cdot 3$	$3 \cdot 7$	4.1	$3 \cdot 5$	$3 \cdot 3$	$3 \cdot 3$	3.8	6.6	6.2
19-20	1.9	1.5	0.8	1.1	1.3	2.5	2.7	2.2	3.3	3.8	1.6	-0.4
20-21	0.04	0.04	0.12	1.60	0.04	0.00	-0.83	-0.54	-0.84	-0.43	-1.34	0.84
21-22	3.40	3.11	3.65	0.83	2.90	2.37	2.37	2.61	2.00	7.39	4.60	2.08
22-23	0.28	-1.22	0.24	-0.601	-0.45	-0.60	-0.20	0.20	0.32	-4.20	-5.29	-1.62
		P. G.	P. G.									

Table XLV.
The Relative Annual Increase in Circumference of Waist. (lnches.)

Ageat nearest	Values in Per Cent, at the following Percentile Grades.											
Birthday.	5	10	20	30	40	50	60	70	80	90	95	Average
15-16	6.21	$4 \cdot 30$	3.86	3.86	3.15	2.35	2.35	3.15	3.50	I. 50	0.75	3.63
16-17	2.35	2.42	2.54	2.00	2.27	2.64	2.77	2.77	2.50	3.11	2.64	5.23
17-18	I. 34	1. 75	2.04	2.59	2.73	2.81	2.92	2.90	2.30	3.28	2.81	2.00
18-19	0.43	1.22	1.22	1.11	1.43	1.36	1.25	1.11	1.54	0.50	0.80	1.08
19-20	1.23	0.42	-. 56	0.80	-. 59	1.33	0.73	1.50	2.00	3.00	2.62	0.07
20-21	-0.35	-0.31	-0.42	-0.60	-0.39	-1.01	-0.17	0.07	0.14	-0.42	-0.73	0.21
21-22	1.77	1.04	0.60	0.34	0.24	0.42	0.49	0.21	-0.55	-1.01	-0.66	0.41
29-23	-0.76	0.00	0.55	0.93	0.62	0.28	0.45	0.76	1. 32	1.73	2.42	1.40

Table XLVI．
The Relative Annual Increase in Span of Arms．（Inches．）

at nearest	Values in Per Cent．at the following Percentile Grades．											
Birthday．	5	10	20	30	40	50	60	70	80	90	95	Average．
15－16	0.3	2.11	3.15	3.86	3.58	3.60	3.86	4.10	2.38	2.97	4.76	5.37
16－17	40	2.40	1.78	1.71	1.51	1.63	1.63	1.64	1.79	1.80	1.00	I． 14
17－18	1.2	0.91	0.61	1.00	0.95	0.95	1.01	0.71	0.72	0.72	0.63	1.83
18－19	－0．0	0.62	1.06	0.66	0.62	0.67	0.61	0.85	0.79	0.46	0.79	1.15
19－20	0.6	0.67	0.35	0.52	0.51	0.52	0.68	0.95	0.67	1.19	0.35	－0．03
20－21	0.6	1.28	1.38	1． 34	1.05	0.75	0.74	0.35	0.20	0.00	1.17	0.81
21－22	－1．7	－1．45	－1．30	－1．21	－0．76	－0．46	－0．40	－0．12	0.45	0.62	－0．27	－0．66
22－23	4.2	2.03	2.00	1.73	1．00	0.47	0.35	－0．08	－0．61	－1．35	－0．82	1.14

Table XLVII

The Relative Annual Increase in Right Hand Squeeze．（Pounds．）

se at nearest	Values in Per Cent．at the following Percentile Grades．											
Birthday．	5	10	20	30	40	50	60	70	80	90	95	Average．
15－16	21.3	24.4	20.8	15.0	10.8	13．1	11.0	9.0	10.6	5.1	16.4	17.2
16－17	8.5	7.2	10.0	11.0	10.2	10.1	10.2	10.5	10.3	－10．2	5.6	8.3
17－18	$7 \cdot 3$	6.4	2.4	0.5	2.6	3.00	$2 \cdot 7$	2.7	3.1	3.0	3.6	$4 \cdot 5$
18－19	$3 \cdot 5$	3.8	$5 \cdot 7$	6.8	$5 \cdot 3$	5.5	6.3	6.2	6.2	$7 \cdot 3$	7.0	5.0
19－20	0.7	1.0	2.4	2.2	1.7	2.1	1.8	2.0	$4 \cdot 2$	1.6	1.4	2.3
20－21	1.0	1.5	1.0	2.1	2.7	2.3	3.1	$3 \cdot 3$	1.7	$3 \cdot 5$	3.8	I． 1
21－22	-1.2	－3．00	-3.5	－3．0	－1．2	－0．9	-2.7	－4．0	－2．6	-3.6	－2．2	－1．7
22－23	3.3	4.2	$7 \cdot 3$	7.8	5.9	4.6	5.8	7.4	3.7	0.9	2.4	0.1

Table XLVIII．
The Relative Annual Increase in Left Hand Squeeze．（Pounds．）
ge at nearest \quad Values in Per Cent，at the following Percentile Grades．

Birthday．	5	10	20	30	40	50	60	70	80	90	95	Average．
15－16	20.0	25.0	21.0	16.0	13.1	14.3	14.5	15.0	12.3	15.0	15.1	16.6
16－17	14.3	11.4	13.0	13.7	13.5	12.1	13.4	15.4	15.3	10.7	11.0	9.1
17－18	$2 \cdot 7$	$3 \cdot 5$	2.3	0.5	0.0	2.0	2.0	0.8	2.3	2.2	2.7	$4 \cdot 4$
18－19	9.1	6.5	$5 \cdot 4$	6.7	8.4	8.1	7.0	7.6	6.2	8.8	6.0	． 8
19－20	－r． 3	0.0	1.3	1.9	1.2	0.6	1.8	$4 \cdot 7$	$5 \cdot 4$	3.8	$5 \cdot 5$	2.4
20－21	5.0	$5 \cdot 5$	$4 \cdot 4$	3.3	2.8	2.9	3.2	0.0	－0．3	0.3	0.7	2.8
21－22	－2．8	－5．0	－4．3	－2．1	－2．0	－0．8	－0．6	－0．7	0.9	－0．3	－1．8	－1．8
22－23	1.5	2.2	6.0	4.0	3.1	1.4	0.6	－0． 2	－2．5	－2．5	1.2	－1．

Table XLIX．The Height，Standing．

	$\left\|\begin{array}{rr} 0 \\ 4 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 5 \\ z & 4 \\ 0 \\ 0 \\ 0 \end{array}\right\|$		$\begin{aligned} & \dot{0} \\ & \text { or } \\ & \text { M } \\ & \stackrel{y}{4} \end{aligned}$									
15	131		63.80	± 0.136	土1．96	2．65\％			62.058	64.290	66.208	＋ 0.490
16	395		65.93	to．080	士1．56	2.36	2.13	3．34\％	64.147	65.850	67．6ı0	－0．125
17	722		67.05	± 0.059	士 1.59	2.37	1.12	I． 70	65.509	67．000	68.708	－ 0.050
18	841		67.29	± 0.057	士1．68	． 5	0.24	0.36	66.184	67.633	69.292	＋0．343
19	75°		67.90	± 0.054	士1．50	2	0.61	0.91	66.547	67.651	69.514	－ 0.249
20	645		68.55	± 0.060	土r．50	2.18	0.65	0.95	66.753	68.252	69.865	－0．298
21	493		68.60	± 0.071	士1．58	2.30	0.05	0.073	66.743	68.215	69.831	－0．385
22	328		68.45	± 0.086	± 1.56	2.27	－0．15	－0．215	66.894	68.352	70.280	－0．098
23	232		68.	± 0.099	土 1.51	2.20	0.17	0.248	66.940	68.522	69.980	－0．098

Table L．The Weight．

15	131	107.0	± 0.922	土10．60	10．0\％	16．7\％				108.5	118.5	＋ 1.5
16	395	118.0	± 0.531	土10．56	8.9	18.2	11.0	10．3\％	106	116.9	127.8	－ 1.1
17	722	125.0	± 0.370	者 9.94	7.9	18.6	7.0	6.0	114.4	124.8	135.0	0.
18	84 I	133.4	± 0.400	± 11.28	8.4	20.0	8.4	6.7	121.9	131.8	143	－ 1.5
19	750	${ }^{1} 39.7$	± 0.360	± 9.86	7.0	20.5	6.3	5.0	127.1	137.0	147	2.7
20	695	141.2	± 0.371	士 9.43	6.7	20.6	1.5	1.1	128.8	138.5	149.	2.7
21	493	140.0	± 0.456	± 10.14	7.2	20.4	－1．2	－0．8	127.3	138.9	149.	－ 1.1
22	328	141.3	± 0.500	士 9.07	6.4	20.6	－1． 3	－1．0	130.1	$13^{8.7}$	150.6	－ 2.6
23	232	14	± 0.768	土11．81	8.	21.0	2.7	2.	128.9	138.3	149.1	$5 \cdot 7$

Table LI．The Height，Sitting．

Table LiI．The Perineal Height．

Table LIII．The Circumference of Chest．

Table LIV．The Lung Capacity．

			E	d	A	A / H						
15	13^{2}	183	± 2.303	± 26.10	1＋．2\％	40.9			152.4	178.2	202.2	-4.8
16	395	395	± 1.091	I21．69	10.8	32.9	18.	10．0\％	176.5	1935	217.8	－7．5
17 i	722	722	± 0.820	± 22.00	10.1	33.0	16.	8.0	187.3	208.8	233.6	．
18	841	841	± 0.732	± 22.87	10.1	34.0	9.	4.1	197.9	2190	240.8	－7．0
19	750	750	士0 642	± 19.60	8.2	28.8	14.0	6.2	209.2	228.3	$24^{8.2}$	－11．7
20	675	675	± 0.834	I21．19	8.8	30.8	-1.0	－0．4	211.3	233.2	255.3	． 8
21	483	493	± 0.940	± 20.84	8.6	30.2	2.0	0.84	213.2	232.2	253.6	－8．8
22	328	328	士1． 150	± 20.83	8.5	30.4	5.0	2.08	－218．5	237.9	259.2	I
23	232	232	士1．250	± 16.05	7.9	27.8	-4.0	－1．62	216.2	236.3	259.8	-5.7

Table LV．The Circumference of the Waist．

Table LVI．The Span of Arms．

Table LVII．The Right Hand Squeeze．

15	36	61.0	－0．800	9.12	15.0	95．4\％			$49 \cdot 5$	60.0	69.1	－
16	110	71.5	± 0.367	土 7.30	． 2	108.0	10.50	17．20\％	60.5	68.	75.0	－3．5
17	225	77.5	± 0.273	± 7.33	9.0	115.6	$5 \cdot 97$	8.30	68.0	75.2	82.6	-3.27
18	245	81.0	± 0.245	土7．11	8.1	120.3	3.53	4.50	69.2	$77 \cdot 5$	84.8	-3.5
19	200	85.0	10．274	± 7.52	8.8	125.2	4.00	5.00	74.2	82.0	89.8	－3．0
20	165	77.0	± 0.316	± 8.03	$9 \cdot 2$	127.0	2.00	5.00	76.2	83.8	92.5	－3．2
21	103	88.0	± 0.365	± 8.15	$9 \cdot 2$	128.3	1.00	2.30	77.6	85.8	$94 \cdot 7$	－2．2
22	68	86.5	士0．449	土8．14	9.4	126.5	－1．50	－1．70	74.7	85.0	91.8	－1．5
23	46	86.6	± 0.421	± 6.42	7.6	126.2	0.10	0.10	81.2	89.0	96.5	$+2$

Table LVIII．The Left Hand Squeeze．

15	36	60.0	± 0.790	c6	15.1	94．0\％			46.3	56.4	62.1	-3.6
16	110	70.0	± 0.368	土7．31	10.4	106.2	10.0	16．6\％	56.3	65.0	70.3	－5．0
17	225	76.6	± 0.274	土7－43	9.7	114.3	6.6	9.1	66.6	73.5	81.0	－3．1
18	245	80.0	± 0.250	士7．22	9.0	119.0	$3 \cdot 4$	$4 \cdot 4$	67.7	75.0	82.2	－5．0
19	200	83.0	± 0.273	± 7.43	9.0	122.2	3.0	3.8	72.6	81.5	87.8	－1．
20	166	85.0	± 0.322	± 8.19	9.6	124.0	2.0	2.4	73.9	82.0	92.0	-3.0
21	103	97.4	± 0.327	± 7.26	8.3	127.4	2.4	2.8	77.2	84.5	91.8	－2．9
22	68	85.8	± 0.463	± 8.40	9.8	$125 \cdot 3$	－1．6	－1．8	74.5	83.8	91.9	－2．0
23	46	84.7	士0．466	± 7.10	8.3	123.3	－1．1	－1．3	78.8	85.0	90.9	＋0．3

[^0]: * The tables referred to will be found in the Appendix.

[^1]: * Number smaller than under the preceding years, especially in individual 75 percentile grade, and therefore this grade is not plotted.
 \dagger Refers to the averages derived from the whole number of observations, expressed here in percentile grades.

